Universidade Federal de São Paulo Pró-Reitoria de Graduação Campus Diadema Departamento de Engenharia Química Instituto de Ciências Ambientais, Químicas e Farmacêuticas

PROJETO PEDAGÓGICO DO CURSO DE ENGENHARIA QUÍMICA

DIADEMA, S.P. 2023

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Reitor da Universidade Federal de São Paulo

Prof. Dr. Nelson Sass

Pró-Reitora de Graduação

Profa. Dra. Ligia Ajaime Azzalis

Diretor Acadêmico do Campus

Prof. Dr. Dário Santos Júnior

Coordenação do Curso de Engenharia Química

Prof. Dr. Werner Siegfried Hanisch - Coordenador

Profa. Dra. Sania Maria de Llma - Vice-Coordenadora

Comissão de Curso

Profa. Dra. Anna Rafaela Cavalcante Braga - representante docente

Prof. Dr. José Ermírio Ferreira de Moraes - representante docente

Prof. Dr. José Plácido - representante docente

Profa. Dra. lara Rocha Antunes Pereira Bresolin - representante docente

Prof. Dr. Wilson Hideki Hirota - representante docente

Técnica em Assuntos Educacionais Liliane Giglio Canelhas de Abreu Segeti - representante dos TAEs

Núcleo Docente Estruturante (NDE), instituído em conformidade com a Portaria da Reitoria/Unifesp nº 1.125, de 29 de abril de 2013

Prof. Dr José Ermírio Ferreira de Moraes – Coordenador

Profa. Dra. Gisele Atsuko Medeiros Hirata - Vice-Coordenadora

Profa. Dra. Anna Rafaela Cavalcante Braga

Profa. Dra. Milene Costa Codolo

Prof. Dr. Rafael Maurício Matricarde Falleiro

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

LISTA DE ILUSTRAÇÕES

- Figura 1: Evolução do número de alunos matriculados nos campi da Unifesp até 2020 (UNIFESP, 2022b).
- Figura 2: Evolução do número de alunos matriculados no curso de Engenharia Química da Unifesp desde sua criação em 2007 até 2020 (UNIFESP, 2022b).
- Figura 3: Evolução do número de alunos do sexo feminino e masculino até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).
- Figura 4: Evolução do número de alunos nos períodos Integral e Noturno até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).
- Figura 5: Evolução do número de alunos cotistas e não-cotistas até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).
- Figura 6: Detalhamento da evolução do número de alunos até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).
- Figura 7: Número de concluintes até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).
- Figura 8: As unidades do *Campus* Diadema da Unifesp inseridas no contexto industrial do município (Elaboração própria).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

LISTA DE TABELAS

- Tabela 1: Conceitos do curso (CC) e, Conceito Preliminar (CPC) para o curso de Engenharia Química da Unifesp (UNIFESP, 2022a).
- Tabela 2: Distribuição da carga horária dos grupos das unidades curriculares da matriz do curso de Engenharia Química.
- Tabela 3: Matriz Curricular do Curso de Engenharia Química Período Integral.
- Tabela 4: Matriz Curricular do Curso de Engenharia Química Período Noturno.
- Tabela 5: Pré-Requisitos (recomendados e obrigatórios) das Unidades Curriculares Fixas do Curso de Engenharia Química Integral.
- Tabela 6: Pré-Requisitos (recomendados e obrigatórios) das Unidades Curriculares Fixas do Curso de Engenharia Química Noturno.
- Tabela 7: Conhecimento prévio necessário para cursar as unidades curriculares do curso de Engenharia Química.
- Tabela 8: Equivalências entre unidades curriculares da matriz curricular de 2017 a 2022 e a matriz de 2023.
- Tabela 9: Corpo Docente.
- Tabela 10: Corpo Técnico-Administrativo.
- Tabela I: Resumo das equivalências entre Unidades Curriculares da matriz (2007-2016) e Unidades Curriculares da matriz 2017 2022.
- Tabela II: Detalhamento das equivalências por UC e por Termo, período integral. Esta equivalência será concedida apenas para ingressantes de 2007 a 2016.
- Tabela III: Detalhamento das equivalências por UC e Termo, período noturno. Esta equivalência será concedida apenas para ingressantes de 2007 a 2016.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

SUMÁRIO

APRESENTAÇÃO	1
1. DADOS DA INSTITUIÇÃO	4
1.1 Nome da Mantenedora	4
1.2 Nome da IES	4
1.3 Lei de Criação	4
1.4 Perfil e Missão	4
1.5 Evolução do número de estudantes da graduação matriculados na Unifesp	5
2. DADOS DO CURSO	7
2.1 Nome	7
2.2 Grau	7
2.3 Forma de Ingresso	7
2.4 Número Total de Vagas	7
2.5 Turnos de Funcionamento	7
2.6 Carga Horária Total do Curso	7
2.7 Regime do Curso	7
2.8 Tempo de Integralização	7
2.9 Situação Legal do Curso	7
2.9.1 Criação e Autorização do Curso de Engenharia Química	7
2.9.2 Reconhecimento	3
2.9.3 Renovação de Reconhecimento	8
2.10 Endereço de Funcionamento do Curso	ç
2.11 ENADE, Conceito Preliminar de Curso (CPC) e Conceito de Curso (CC)	Ç
3. HISTÓRICO	10
3.1 Breve Histórico da Universidade	11
3.2 Breve Histórico do Campus	12
3.3 Breve Histórico do Curso	15
4. PERFIL DO CURSO E JUSTIFICATIVA	24
5. OBJETIVOS DO CURSO	30
5.1 Objetivo Geral	30
5.2 Objetivos Específicos	30
6 PERFIL DO EGRESSO	32

6.1 Área de Atuação do Engenheiro Químico	33
6.2 Acompanhamento do Egresso	34
7. ORGANIZAÇÃO CURRICULAR	36
7.1 Unidades Curriculares do Núcleo de Conteúdos Básicos	41
7.2 Unidades Curriculares do Núcleo de Conteúdos Profissionalizantes	41
7.3 Unidades Curriculares do Núcleo de Conteúdos Específicos	42
7.4 Estágio Supervisionado (160 h)	43
7.5 Trabalho de Conclusão de Curso (210 h)	43
7.6 Atividades Complementares (60 h)	43
7.7 Unidades Curriculares Eletivas (144 h)	43
7.8 Atividades Extensionistas (426 h)	43
7.8 Matriz Curricular	45
7.9 Conteúdo prévio necessário para cursar Unidades Curriculares	63
7.10 Equivalências	74
7.11 Unidades Curriculares Eletivas	75
7.12 Ementa e Bibliografia	76
8. PROCEDIMENTOS DE AVALIAÇÃO	136
8.1 Sistema de Avaliação do Processo de Ensino e Aprendizagem	136
8.1.1 Avaliação do Corpo Discente	136
8.1.2 Avaliação do Ensino	138
8.2 Sistema de Avaliação do Projeto do Curso	139
9. ATIVIDADES COMPLEMENTARES	141
9.1 Empresa Júnior de Engenharia Química	143
9.2 Centro Acadêmico Unifesp de Engenharia Química (CAUEQ)	145
10. ESTÁGIO CURRICULAR	146
11. TRABALHO DE CONCLUSÃO DE CURSO	149
12. APOIO AO DISCENTE	151
13. PROGRAMAS INSTITUCIONAIS	156
14. GESTÃO ACADÊMICA DO CURSO	158
15. RELAÇÃO DO CURSO COM O ENSINO, A PESQUISA E A EXTENSÃO	164
16 CURRICULARIZAÇÃO DA EXTENSÃO	166

17. INFRAESTRUTURA	169
17.1 Biblioteca	170
17.2 Restaurante Universitário	171
17.3 Transporte entre as unidades do Campus	172
17.4 Laboratório Multidisciplinar 1 (Química Orgânica Experimental)	172
17.5 Laboratórios Multidisciplinares 2 e 3 (Química Geral Experimental, Química Analítica Geral II e Análise Instrumental)	173
17.6 Laboratório Multidisciplinar 4 (Física I, III e IV)	174
17.7 Laboratório de Análise Instrumental	174
17.8 Laboratórios de Engenharia Química I e II	175
17.9 Laboratório de Engenharia Química III	178
17.10 Laboratório de Princípios de Automação e Instrumentação	180
17.11 Estrutura de Informática	181
17.11.1 Laboratórios de Informática	182
17.11.2 Softwares	182
17.12 Laboratório Multidisciplinar 5 (Biologia Celular e Genética)	184
17.13 Oficina Mecânica	185
18. CORPO SOCIAL	186
18.1 Docentes	186
18.2 Técnicos Administrativos e Educacionais	196
19. REFERÊNCIAS	199
ANEXO I	202
Matriz de transição para os alunos que ingressaram de 2007 a 2016	202

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

APRESENTAÇÃO

O curso de Engenharia Química da Universidade Federal de São Paulo (Unifesp-Campus Diadema) iniciou suas atividades acadêmicas, no período integral, no primeiro semestre do ano de 2007, e, no período noturno, no primeiro semestre de 2010, com o oferecimento de 50 vagas em cada período. Em 2011, após a formação da primeira turma, o curso foi avaliado pelo Instituto Nacional de Pesquisas Educacionais Anísio Teixeira (INEP), e obteve Conceito de Curso 3, sendo que um dos pontos destacados pela comissão avaliadora foi a carga horária excessiva do curso (acima da média de outros cursos nacionais).

Após seis anos de atividades na área de ensino, pesquisa e extensão, os docentes do curso de Engenharia Química, impulsionados pela maturidade profissional, experiência pedagógica e avaliação do MEC, iniciaram no final de 2012, junto ao Núcleo Docente Estruturante (NDE) do curso de Engenharia Química, um trabalho de avaliação das Matrizes Curriculares do período integral e noturno. Após cerca de 4 anos de trabalho, o NDE, juntamente com a Comissão do Curso de Engenharia Química (CCEQ), que engloba docentes, servidores técnico-administrativos em educação e representantes discentes, apresentaram a nova Matriz Curricular, reduzindo a carga horária total do curso para 4.182 h. Essa atualização do projeto pedagógico do curso de Engenharia Química foi finalizada em 2016, de forma a atender às determinações legais materializadas nas Diretrizes Curriculares Nacionais (DCNs), resoluções e pareceres do Conselho Nacional de Educação (CNE), pelas normas institucionais e pelos princípios estabelecidos no Projeto Pedagógico Institucional (PPI) da Universidade Federal de São Paulo. Em 2017, o projeto pedagógico aprovado foi implementado e todos os alunos migraram para a nova matriz, a partir de uma matriz de transição e equivalências estabelecidas no PPC.

A partir de 2018 o NDE do curso de Engenharia Química começou os trabalhos para a implementação da Política de Extensão Universitária, considerando a Resolução

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

CNE/CES No. 7, de 18 de dezembro de 2018 do Ministério da Educação¹, que estabeleceu as Diretrizes para a Extensão na Educação Superior Brasileira, e a Resolução CONSU No. 139, de 11 de outubro de 2017 do Conselho Universitário da Unifesp², que regulamentou a curricularização das atividades de extensão nos cursos de graduação da Universidade Federal de São Paulo. Concomitantemente ao trabalho de estruturação da curricularização da Extensão no curso de Engenharia Química, foram feitas também outras discussões para a consolidação da nova matriz, com ajustes e melhorias sempre necessários. O aprimoramento do curso em função do corpo docente, discente, técnico e entorno social são prerrogativas essenciais para a evolução constante da Engenharia Química na Unifesp.

Em 2020, antes das mudanças mais significativas do PPC apresentadas nesta atualização de 2022, foi realizada uma alteração pontual do projeto pedagógico, modificando-se a forma de ingresso no curso. Até 2019, a forma de ingresso no curso era feita por meio do Vestibular Misto, que era uma composição entre as notas do ENEM e de provas complementares aplicadas pela Unifesp. No ano seguinte, o Curso de Engenharia Química da Unifesp aderiu ao Sistema de Seleção Unificada (Sisu) gerido pelo MEC, com o intuito de, além de tornar o acesso mais democrático, aumentar a abrangência do curso, expandindo-o além dos limites da região metropolitana de São Paulo.

A presente atualização do projeto pedagógico do curso de Engenharia Química estabelece as regras de inserção da extensão universitária e a criação de uma política de incentivo à elaboração e execução de projetos extensionistas pelos docentes para contribuição nas disciplinas curricularizadas. Adicionalmente, são feitas alterações para adequação às novas Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia (Resolução No. 2, de 24 de abril de 2019³). São instituídas as atividades complementares ao curso, estabelecidas novas regras

¹RESOLUÇÃO Nº 7, DE 18 DE DEZEMBRO DE 2018 - Imprensa Nacional

³ministério da educação conselho nacional de educação câmara de educação superior resolução nº 2, de 24 de abril de 2019

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

para a realização dos estágios obrigatórios e não-obrigatórios, efetuadas alterações pontuais na ordem de oferecimento de algumas disciplinas na matriz curricular e realizadas revisões dos pré-requisitos das Unidades Curriculares (disciplinas).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

1. DADOS DA INSTITUIÇÃO

1.1 Nome da Mantenedora

Universidade Federal de São Paulo

1.2 Nome da IES

Universidade Federal de São Paulo

1.3 Lei de Criação

Lei 8.957, de 15 de dezembro de 1994.

1.4 Perfil e Missão

De acordo com o Plano de Desenvolvimento Institucional - PDI (2021-2025) da Unifesp, a visão da instituição é ser cada vez mais reconhecida pela Sociedade como uma Universidade Pública democrática, autônoma, transformadora e comunicativa. Mais especificamente, no âmbito da visão institucional, a Unifesp pretende ser cada vez mais: "plural, inclusiva e solidária"; "independente e com autonomia intelectual e científica"; "criativa, cooperativa e indutora do desenvolvimento com justiça social e ambiental"; "produtora e difusora do conhecimento socialmente diferenciado, na defesa da vida e da educação pública, combatendo as desigualdades e os racismos estrutural e institucional"⁴.

Já a missão é "formar profissionais e cidadãos conscientes, críticos e tecnicamente habilitados, nas mais diversas áreas, preparados para transformar a realidade e desenvolver o país, na construção de uma sociedade mais justa, democrática, plural e sustentável, por meio de ensino, pesquisa, extensão, gestão, cultura, assistência, inovação tecnológica, social e em políticas públicas, atuando como universidade pública, gratuita, laica e socialmente referenciada"⁴.

⁴ ■ Súmario_Executivo_VolumeI_II_III_26_02_2021.pdf

11

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Conforme reportado no PDI (2021-2025), o papel das universidades públicas deverá ser decisivo e impactante neste momento de reconstrução nacional pós-pandemia. Nesse contexto, todas as ações da Universidade "deverão ser alinhadas com os Grandes Temas Estratégicos e seus objetivos, de forma a garantir unidade na ação, melhora de desempenho e alcance das metas". Os cinco Grandes Temas Estratégicos podem ser enunciados como: (1) Defesa da vida, da educação pública e da dignidade humana; (2) Universidade plural, democrática e articulada com a sociedade; (3) Ciência, educação e inovação com impacto social e em cooperação; (4) Articulação pedagógica e multiunidades; (5) Completar e consolidar a expansão.

As Metas e Estratégias da Unifesp encontram-se alinhadas com as diretrizes traçadas no Plano Nacional de Educação (Lei 13.005/2014)⁵, buscando alinhamento também com a Agenda 2030 para o Desenvolvimento Sustentável da Organização das Nações Unidas (ONU) por meio dos *Objetivos para o Desenvolvimento Sustentável* (ODS), ocupando posição de destaque internacional na implementação desses objetivos.

1.5 Evolução do número de estudantes da graduação matriculados na Unifesp

A Figura 1 mostra, a partir de dados consolidados de 2020 (UNIFESP, 2022b⁶), a evolução do número de alunos matriculados em todos os *campi* da Unifesp no período entre 2005 e 2020, onde as cores representam os diversos *campi*. Organizados em ordem vertical descendente, tem-se os seguintes *campi* (cor entre parêntesis): Baixada Santista (azul), Diadema (laranja), Guarulhos (vermelho), Osasco (verde), São José dos Campos (amarelo) e São Paulo (roxo).

5http://pne.mec.gov.br/18-planos-subnacionais-de-educacao/543-plano-nacional-de-educacao-lei-n-13 -005-2014

_

⁶https://www.unifesp.br/reitoria/indicadores/graduacao

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Figura 1: Evolução do número de alunos matriculados nos *campi* da Unifesp até 2020 (UNIFESP, 2022b).⁶

Legenda de cores, ordem vertical descendente - cor (Campus):

Baixada Santista (Azul); Diadema (laranja); Guarulhos (vermelho); Osasco (verde); São José dos Campos (amarelo); São Paulo (roxo).

⁶ https://www.unifesp.br/reitoria/indicadores/graduacao

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

A Figura 1 coloca em clara evidência o expressivo aumento do número de estudantes matriculados em seus diversos *campi* a partir de 2007, ano em que a Unifesp aderiu ao programa de expansão das universidades federais (REUNI).

2. DADOS DO CURSO

2.1 Nome: Bacharelado em Engenharia Química

2.2 Grau: Bacharelado

2.3 Forma de Ingresso: Sistema de Seleção Unificada (SiSU)

2.4 Número Total de Vagas: 50 vagas para o turno integral e 50 vagas para o turno

noturno.

2.5 Turnos de Funcionamento: Integral e noturno.

2.6 Carga Horária Total do Curso: 4.264 horas.

2.7 Regime do Curso: Semestral.

2.8 Tempo de Integralização: No período integral o período mínimo de integralização é de 10 semestres ou 5 anos. No período noturno o período mínimo é de 12 semestres ou 6 anos. Os prazos máximos de integralização são definidos conforme o Art. 120º do Regimento Interno da Pró-Reitoria de Graduação (ProGrad), de 2014⁷.

2.9 Situação Legal do Curso

2.9.1 Criação e Autorização do Curso de Engenharia Química

De acordo com a Resolução Nº 33, do Conselho Universitário (CONSU) da Universidade Federal de São Paulo, de 15 de dezembro de 2005⁸, foi aprovada a

⁷Regimento Interno 2014 ProGrad

⁸ https://www.unifesp.br/images/docs/consu/resolucoes/resolucao33.pdf

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

instalação da Unifesp/*Campus* Diadema, tendo como sede provisória o endereço sito à Rua Artur Riedel, 275, Eldorado - Diadema/SP. Na mesma resolução, foi aprovada a criação do Curso de Graduação em Engenharia Química, primeiro curso de Engenharia da Unifesp.

De acordo com a Portaria Ministerial Nº 1.235 (19/12/2007) do Ministério da Educação, publicada no Diário Oficial da União de 20/12/2007, circunstanciada no Parecer Nº 203/2007 da Câmara de Educação Superior do Conselho Nacional de Educação⁹, conforme Processo Nº 23000.021494/2006-65, foi aprovada a criação do *Campus* Diadema da Unifesp. Ademais, também foi autorizado o funcionamento do Curso de Graduação em Engenharia Química da Unifesp, inicialmente com 50 vagas por ano e com uma projeção de atingir 100 vagas por ano.

2.9.2 Reconhecimento

O curso de Engenharia Química, período integral, teve seu reconhecimento aprovado pela Portaria SERES/MEC Nº 517, de 15/10/2013, publicada em 16/10/2013.

O curso de Engenharia Química, período noturno, teve seu reconhecimento aprovado pela Portaria SERES/MEC Nº 649, de 10/12/2013, publicada em 11/12/2013.

2.9.3 Renovação de Reconhecimento

O curso de Engenharia Química teve seu reconhecimento renovado em 2018 pelo Ministério da Educação/Secretaria de Regulação e Supervisão da Educação Superior, por meio da Portaria nº 921, de 27 de dezembro de 2018¹º, publicada no D.O.U em 28 de dezembro de 2018.

9 http://portal.mec.gov.br/cne/arquivos/pdf/2007/pces203 07.pdf

¹⁰ PORTARIA Nº 921, DE 27 DE DEZEMBRO DE 2018 - Imprensa Nacional

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Novamente, o curso de Engenharia Química teve seu reconhecimento renovado em 2021 pelo Ministério da Educação/Secretaria de Regulação e Supervisão da Educação Superior, por meio da PORTARIA nº 111, de 04 de fevereiro de 2021¹¹, publicada no D.O.U em 05 de fevereiro de 2021.

2.10 Endereço de Funcionamento do Curso

Rua Professor Arthur Riedel, 275 - Bairro Eldorado, Diadema, SP

2.11 ENADE, Conceito Preliminar de Curso (CPC) e Conceito de Curso (CC)

A Tabela 1 apresenta as notas do ENADE desde a criação do curso. Em 2011 os alunos boicotaram a prova e entregaram-na em branco, pois estavam insatisfeitos com as condições estruturais do *Campus* ainda em construção e consolidação. A partir disso, a Comissão de Curso iniciou um trabalho intenso com os alunos para a conscientização da importância da realização do ENADE. Além disso, a Comissão do Curso também realizou um trabalho de conscientização da importância do ENADE com os docentes do curso, fazendo-os abordar discussões sobre questões e formas de enfrentamento e de raciocínio para este tipo de desafio.

¹¹ PORTARIA Nº 111, DE 04 DE FEVEREIRO DE 2021 - DOU - Imprensa Nacional

Tabela 1: Conceitos do curso (CC) e Conceito Preliminar (CPC) para o curso de Engenharia Química da Unifesp (UNIFESP, 2022a¹²).

ANO	ENADE	Conceito Preliminar de Curso (CPC)	Conceito de Curso (CC)
2019	3	4	-
2017	3	4	-
2013	-	-	3
2011	1	3	-

¹² Indicadores do MEC

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

3. HISTÓRICO

3.1 Breve Histórico da Universidade

A criação da Universidade Federal de São Paulo (Unifesp), em 1994, veio consolidar o processo de evolução da Escola Paulista de Medicina (EPM), cuja fundação, em 1933, coroou o trabalho de um grupo de médicos empenhados em instalar no Estado de São Paulo um novo polo de ensino médico. Mantida basicamente por meios privados, a EPM foi federalizada em 1956, tornando-se uma instituição pública e gratuita. Posteriormente, mediante a edição de medida legal em 1964, foi transformada em estabelecimento isolado de ensino superior de natureza autárquica.

Ao longo de sua trajetória, a EPM incorporou novos cursos de graduação – Enfermagem, Ciências Biomédicas, Fonoaudiologia e Tecnologia Oftálmica – e pôde implantar programas de pós-graduação, em consequência da qualificação de seu corpo docente e à relevância de sua produção científica. O desdobramento das atividades da EPM resultou, ainda, na criação de centros de estudo, sociedades e fundações.

A Unifesp constitui uma das mais importantes instituições dedicadas à formação de profissionais em diversas áreas, à investigação científica e à prestação de serviços à comunidade. Sua missão é desenvolver, em nível de excelência, atividades inter-relacionadas de ensino, pesquisa e extensão, conforme prevê o artigo 2º do estatuto em vigor¹³.

Para atender às necessidades de ampliação do número de vagas no ensino superior, a Unifesp integrou-se, em 2005, ao programa de expansão das universidades federais (REUNI), propondo-se a atuar em três frentes principais: (i) criação de cursos superiores, especialmente nas áreas de Ciências Exatas e

¹³ https://www.unifesp.br/images/docs/estatuto_geral.pdf

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Humanidades, (ii) introdução do sistema de cotas e (iii) implantação de cursos noturnos.

A instalação de novos *campi* em outros municípios do Estado de São Paulo representou a mobilização de recursos humanos capazes de articular as ações necessárias, exigiu o aporte de verbas consideráveis e motivou a abertura de concursos públicos para a admissão de docentes e técnicos administrativos. A Unifesp – até então especializada em ciências da saúde – redirecionou-se para atingir a universalidade do conhecimento.

Deste modo, com o processo de expansão das Universidades Federais, a Unifesp transformou-se em Universidade plena, com 7 *campi*: São Paulo, Baixada Santista, Guarulhos, Diadema, São José dos Campos, Osasco e Zona Leste, além das Unidades de Extensão de Santo Amaro e Embu das Artes. O *Campus* Zona Leste é o mais novo deles, com suas atividades iniciadas em 2014.

Atualmente, a Unifesp oferece 55 diferentes cursos de graduação, que contados os cursos oferecidos em turnos diferentes, somam-se 82. São sete cursos no *Campus* São Paulo, nove na Baixada Santista, seis em Osasco, sete em São José dos Campos, 23 em Guarulhos, três na Zona Leste e sete em Diadema, totalizando aproximadamente 13.713 alunos em 2020 (UNIFESP, 2022b).

3.2 Breve Histórico do Campus

O Campus Diadema, desde sua criação no ano de 2007, passou por uma grande expansão com a criação de novos cursos de graduação e de programas de pós-graduação. Atualmente, o Instituto de Ciências Ambientais, Químicas e Farmacêuticas, que constitui a unidade universitária do Campus Diadema, oferece sete cursos de graduação (Ciências Ambientais, Ciências Biológicas, Ciências - Licenciatura, Farmácia, Química, Química Industrial e Engenharia Química), os

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

quais totalizavam 2.759 estudantes, no ano de referência de 2020 (UNIFESP, 2022b).

Na pós-graduação, o *Campus* Diadema oferece vagas nos programas de Análise Ambiental Integrada, Biologia Química, Biotecnologia, Ciências Farmacêuticas, Química - Ciência e Tecnologia da Sustentabilidade, Ecologia e Evolução, Engenharia e Ciência de Materiais, Ensino de Ciências e Matemática (PECMA), Engenharia Química, além do Mestrado profissional em Matemática. Perpassando por esses programas foram matriculados 274 alunos de mestrado e 64 de doutorado, totalizando 338 pós-graduandos (PDI 2021-2025).

No Campus Diadema são também desenvolvidas diversas ações de extensão universitária, que vêm crescendo anualmente, principalmente nas áreas de educação e saúde, o que tem contribuído para uma aproximação gradual com a comunidade do município. Os cursinhos pré vestibulares (CIUNI e Articula Vestibular), a Universidade Aberta às Pessoas Idosas (UAPI), o Programa Escolas Sustentáveis, o Fusões e o Atlas Ambiental de Diadema, são alguns exemplos das iniciativas extensionistas que impactam direta e positivamente os munícipes, estreitando cada vez mais sua relação com a Universidade.

Atualmente, o montante de alunos matriculados no *Campus* Diadema é de cerca de 3.097 alunos (UNIFESP, 2022b), denotando uma considerável expansão quando comparado ao montante de 199 alunos matriculados em 2007 e de 1.302 matriculados em 2010 (PDI 2016-2020).

O *Campus* se encontra distribuído por diversas unidades fisicamente separadas entre si, a saber:

- Unidade José de Filippi (próximo à represa Billings, em área de proteção e recuperação de mananciais);
- Unidade José Alencar, que abriga as seguintes edificações: o Prédio de Pesquisa, o Complexo Didático e o Edifício de Acesso (novo prédio entregue em 2022).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

A partir de 2014 houve o planejamento da construção de novos prédios para atender as necessidades do *Campus* Diadema, demandando uma intensa dedicação por parte de toda a comunidade acadêmica ao longo de muitos meses de trabalho e de reuniões do PDInfra (Plano Diretor de Infraestrutura). Assim, conforme consta no PDI 2016-2020, as principais obras projetadas para o *Campus* Diadema foram:

- Edifício de Acesso, com 7.600 m² de área construída. Terá salas de aula e será utilizado para convivência e atendimento aos estudantes, e contará com livraria, café e restaurante universitário;
- Edifício da Biblioteca, com 5.000 m² de área construída. Irá abrigar, também, um teatro. A biblioteca contará com salas de estudo individual e em grupo, além de ambientes de estudo para a pós-graduação;
- Bloco Norte, com 15.000 m² de área construída. Irá abrigar laboratórios de ensino e pesquisa (experimental e teórica), além de áreas para salas de professores e salas de estudo destinadas à pós-graduação.

Contudo, dentre estes três edifícios projetados, somente o Edifício de Acesso, também chamado de Prédio de Acesso, teve suas obras iniciadas em 2016. A obra já foi parcialmente entregue e as salas de aula e restaurante universitário já estão em funcionamento, desde o início do primeiro semestre de 2022. Essas obras compõem a denominada Fase 1 do projeto preliminar desenvolvido, com investimento total previsto de R\$ 93,3 milhões. Após a conclusão desta fase, a expectativa da comunidade acadêmica do *Campus* Diadema é que sejam iniciadas as obras dos edifícios previstos para a Fase 2 do projeto preliminar, os quais consolidariam os espaços necessários de ensino, pesquisa e extensão no *Campus* Diadema da Unifesp.

Como as obras do Edifício da Biblioteca ainda não têm previsão para serem iniciadas, iniciou-se a conversão do andar térreo do Complexo Didático para a Biblioteca do *Campus*. Desta forma, a Biblioteca, que atualmente se situa na unidade Manoel da Nóbrega, passará para instalações mais amplas, modernas e

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

mais adequadas, ao lado das novas instalações de salas de aula do Edifício de Acesso.

3.3 Breve Histórico do Curso

Durante o segundo semestre de 2006 e nos primeiros meses de 2007, todos os docentes então recém contratados para atuar na Unifesp *Campus* Diadema, discutiram amplamente a estratégia de implantação dos quatro cursos de graduação que iniciaram as atividades no primeiro semestre de 2007, sendo eles: Engenharia Química, Química, Farmácia e Bioquímica e Ciências Biológicas.

Essas reuniões, organizadas pela Diretoria Acadêmica do *Campus* Diadema juntamente com a Pró-Reitoria de Graduação da Unifesp, além de serem usadas no estudo das Matrizes Curriculares dos cursos, resultaram na criação do chamado Ciclo Básico da Unifesp *Campus* Diadema, que consistia em um núcleo de Unidades Curriculares comuns e obrigatórias nos dois primeiros semestres dos guatro cursos.

O Curso de Engenharia Química da Unifesp, em período integral, iniciou as suas atividades no ano de 2007, sendo apresentada a denominada "Matriz Ingressantes 2007". De acordo com essa matriz, o curso apresentava uma carga horária de 4.840 horas em Unidades Curriculares obrigatórias e um mínimo de 144 horas em Unidades Curriculares Eletivas, totalizando uma carga horária total mínima de 4.984 horas.

Ao longo de 2007, 2008 e 2009, após a contratação de novos docentes, a matriz foi sendo modificada visando atender a razões pedagógicas, dando origem à matriz, válida para todos os ingressantes a partir de 2009.

Ainda em 2009, baseado na matriz vigente do curso oferecido em período integral, discutiu-se e aprovou-se a Matriz do Curso de Engenharia Química (Período Noturno), iniciado em 2010, apresentando as mesmas cargas horárias de Unidades Curriculares obrigatórias e eletivas.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Em 2013 houve a extinção do Ciclo Básico, sendo necessária a adequação e atualização da Matriz do curso de Engenharia Química. Além disso, a atualização seria necessária para a redução de carga horária do curso e para atender os relatórios de avaliação do INEP/MEC (códigos da avaliação 95504 e 95505 para os cursos integral e noturno, respectivamente) de 2012. A atualização da matriz foi apresentada pelo Núcleo Docente Estruturante (NDE) do curso de Engenharia Química em 2016 na atualização do PPC daquele ano.

Visando o fortalecimento do ensino e pesquisa na área de Engenharia Química, foi elaborada em 2015 uma APCN (Apresentação de Propostas para Cursos Novos) para a criação de um Programa de Mestrado em Engenharia Química, que foi submetida à Capes em maio de 2016. No mesmo ano, o mestrado acadêmico em Engenharia Química foi aprovado, iniciando suas atividades oficialmente junto à Capes em 05/03/2018 e desde então tem colaborado com a formação dos egressos dos cursos de Engenharia Química de todo o país.

O Programa de Pós-graduação em Engenharia Química tem o objetivo de formar profissionais qualificados capazes de desenvolver atividades ligadas à pesquisa, ensino, extensão e desenvolvimento científico e tecnológico nas diversas áreas de atuação. As linhas de pesquisa desta área de concentração possuem alto grau de conexão e interdisciplinaridade, abordando principalmente os seguintes temas: reatores heterogêneos químicos e bioquímicos; desenvolvimento de produtos e processos biotecnológicos; desenvolvimento, modelagem, simulação, otimização e controle de processos; sistemas particulados; controle de emissão de poluentes; tecnologias para redução de resíduos industriais e processos de tratamentos de efluentes líquidos e gasosos.

O diferencial do programa está no desenvolvimento de tecnologias e processos ambientalmente sustentáveis. Desse modo, as linhas integradas de pesquisa proporcionam ao aluno um grande embasamento e a elevação de seu nível de conhecimento em Engenharia Química, possibilitando a atuação em processos

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

químicos, tecnologias conectadas ao meio ambiente e tecnologias químicas e bioquímicas de ponta no país.

O Programa de Pós-graduação em Engenharia Química visa proporcionar a excelência dos alunos de graduação em relação à atuação acadêmica do Engenheiro Químico na pesquisa e inovação, podendo despertar e potencializar talentos que contribuam para o desenvolvimento das áreas de pesquisa que são englobadas pela Engenharia Química. Houve um esforço de conectar as áreas de pesquisa do Programa de Pós-Graduação ao curso de Graduação. Assim, como será mostrado no capítulo "Organização Curricular", as linhas de oferecimento de disciplinas eletivas estão conectadas às linhas de pesquisa deste Programa de Pós-Graduação.

Em 2018, o NDE do curso começou os trabalhos para a implementação da Política de Extensão Universitária estabelecida pela Resolução Nº 7, de 18 de dezembro de 2018 do Ministério da Educação¹, que estabeleceu as Diretrizes para a Extensão na Educação Superior Brasileira e Resolução nº 139, de 11 de outubro de 2017 do Conselho Universitário², que regulamentou a curricularização das atividades de extensão nos cursos de graduação da Universidade Federal de São Paulo (Unifesp).

Em 2020 foi realizada uma alteração específica do projeto pedagógico, adotando-se a forma de ingresso no curso pelo SiSU. O ingresso por este sistema teve o objetivo de tornar o acesso mais democrático e expandi-lo além dos limites da região metropolitana de São Paulo.

A presente atualização do projeto pedagógico do curso de Engenharia Química contempla a inserção da extensão universitária e a criação de uma política de incentivo à elaboração e execução de projetos extensionistas pelos docentes para contribuição nas disciplinas curricularizadas. São instituídas as atividades complementares ao curso, estabelecidas novas regras para a realização dos

¹RESOLUÇÃO Nº 7, DE 18 DE DEZEMBRO DE 2018 - Imprensa Nacional

²https://www.unifesp.br/reitoria/proec/images/PROEX/Curriculariza%C3%A7%C3%A3o/Resolucao139_curricularizacao.pdf

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

estágios obrigatórios e não-obrigatórios, efetuadas alterações pontuais na ordem de oferecimento de algumas disciplinas na matriz curricular curricular e realizadas revisões dos pré-requisitos das unidades curriculares (disciplinas). As alterações nos pré-requisitos das disciplinas visam permitir uma melhor fluência dos alunos ao longo do cumprimento das diversas Unidades Curriculares presentes na Matriz Curricular do curso, porém, sem ocasionar prejuízos pedagógicos para os discentes. Tais modificações nos pré-requisitos visam também otimizar o tempo de integralização do curso pelos alunos.

O curso contava, a partir de dados consolidados de 2020 (UNIFESP, 2022⁶), com 579 alunos matriculados, com a evolução do número de matriculados desde sua criação apresentada na Figura 2, com média nos últimos 4 anos de 576 alunos. Adicionalmente, desde a sua criação, o curso tem apresentado uma equidade entre números de alunos do sexo feminino e masculino (Figura 3). Isto mostra o potencial do curso em políticas afirmativas de igualdade de gênero, cenário muito importante especialmente nos cursos de engenharia. O número de alunos dos cursos integral e noturno também é bem equilibrado, mostrando que os dois turnos têm procura significativa (Figura 4). A Figura 5 mostra a evolução do número de alunos cotistas e não cotistas, com detalhamento mostrado na Figura 6. Na Figura 6 nota-se o aumento do número de alunos pretos e pardos, apesar da predominância de brancos. Isso mostra e reafirma a importância da continuidade das políticas de cotas iniciadas a partir de 2010, com a Resolução Consu 53 de 15/07/2009 e Lei 12.711. de 29 de agosto de 2012. Até 2012, 10% das vagas de ingressantes eram reservadas a cotistas (Figura 6). Em 2013 passou-se para 15% as vagas destinadas ao sistema de cotas, em 2014 para 25% e em 2015, 37,5%. Finalmente, a partir de 2016, 50% das vagas foram para o sistema de cotas.

Porém, conforme a Figura 7, tem-se observado uma redução do número de alunos formandos. Dentre as diferentes causas para o referido problema, destaca-se a cadeia anterior de pré-requisitos do curso, fato que será dirimido com a

⁶ https://www.unifesp.br/reitoria/indicadores/graduacao

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

implementação do novo PPC. Outro importante fator consiste na opção dos alunos por atrasarem a sua formação em função da realização dos estágios remunerados. Porém, para resolver esse segundo problema, seriam necessárias alterações nas regras de integralização dos cursos de graduação previstas no Regimento Interno da Pró-Reitoria de Graduação da Unifesp.

Figura 2: Evolução do número de alunos matriculados no curso de Engenharia Química da Unifesp desde sua criação em 2007 até 2020 (UNIFESP, 2022b).

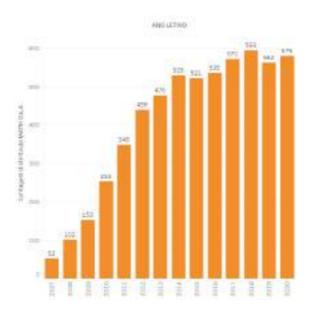
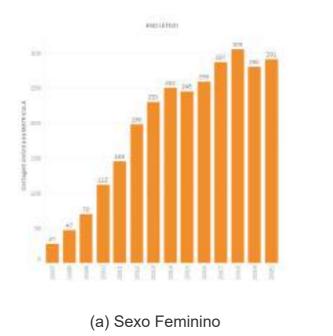



Figura 3: Evolução do número de alunos do sexo feminino e masculino até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).

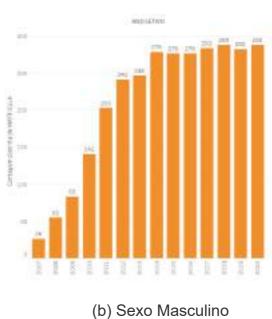


Figura 4: Evolução do número de alunos nos períodos Integral e Noturno até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).

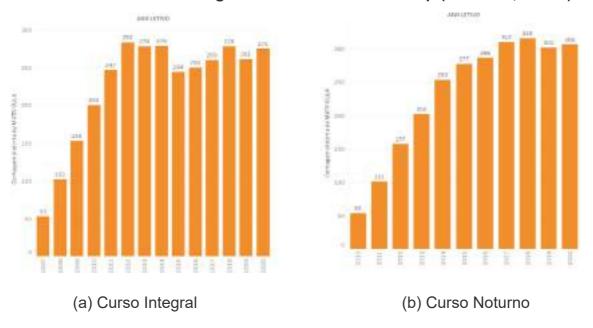


Figura 5: Evolução do número de alunos cotistas e não-cotistas até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).

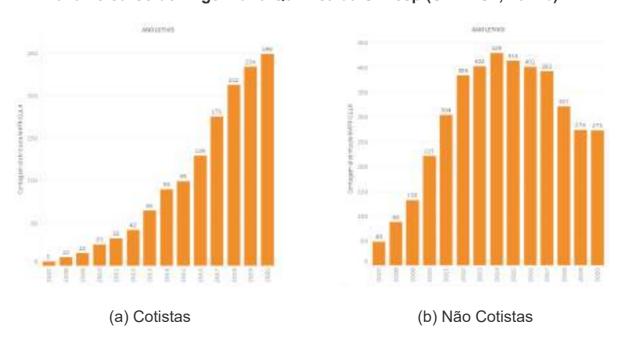
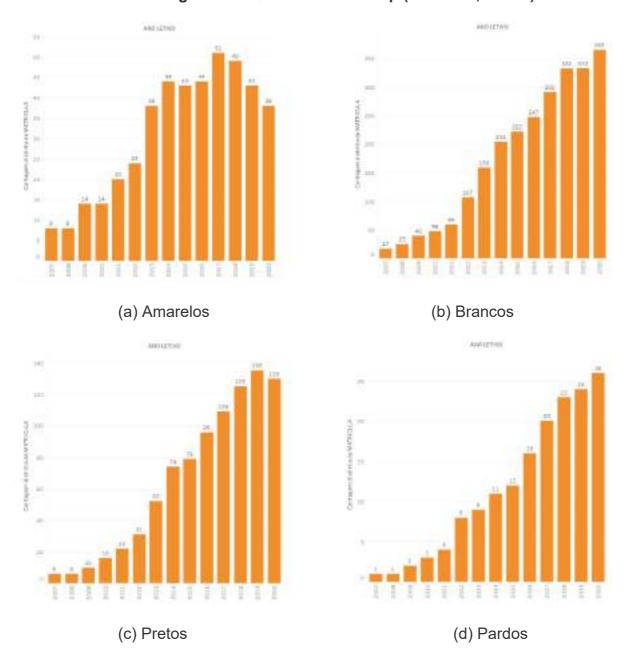
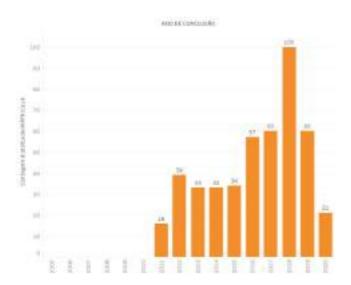



Figura 6: Detalhamento da evolução do número de alunos até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).



Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Figura 7: Número de concluintes até o ano de 2020 no curso de Engenharia Química da Unifesp (UNIFESP, 2022b).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

4. PERFIL DO CURSO E JUSTIFICATIVA

O Engenheiro Químico possui capacitação para contribuir no avanço tecnológico e organizacional da moderna produção industrial, comprometida com sua eficiência, qualidade e competitividade, além de poder relacionar os problemas de natureza tecnológica, social, econômica e ambiental associados com os processos produtivos.

Neste contexto, o curso de Engenharia Química da Unifesp abrange basicamente a pesquisa e desenvolvimento de produtos e processos químicos, bioquímicos e físico-químicos industriais; o projeto de plantas e equipamentos de produção química; a implementação e colocação em operação de unidades de produção químicas, além da operação e controle de processos.

A Região Metropolitana de São Paulo (RMSP) é formada por São Paulo, capital do Estado, e mais 39 municípios, que ocupam 7.946 km² do território paulista. Em 2021, a estimativa de população da região era de aproximadamente 22 milhões de habitantes, possuindo a densidade demográfica mais elevada do Estado (IBGE, 2022). Em 2018, por exemplo, os municípios que integram a Região Metropolitana de São Paulo responderam por um PIB de aproximadamente R\$ 2 trilhões, de acordo com dados do IBGE (Portal R7, 2020).

Neste contexto, o município de Diadema apresentava uma população estimada de 429.550 habitantes em 2019, com densidade demográfica *estimada* em 2019 de 13.977,29 habitantes/km², a maior do Estado de São Paulo (IBGE, 2022).

A configuração espacial da RMSP teve como um dos principais fatores determinantes a infraestrutura de transportes, provocando a transferência e/ou a instalação de novas fábricas nas suas imediações. As plantas industriais surgidas na década de 1950, notadamente as automobilísticas, instalaram-se às margens das rodovias e as antigas fábricas, situadas nos eixos ferroviários ou nas regiões centrais da cidade, foram paulatinamente transferidas para novas áreas industriais.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

A implantação de grandes indústrias na região do ABC e o elevado crescimento populacional de seus municípios alteraram a dinâmica urbana da região.

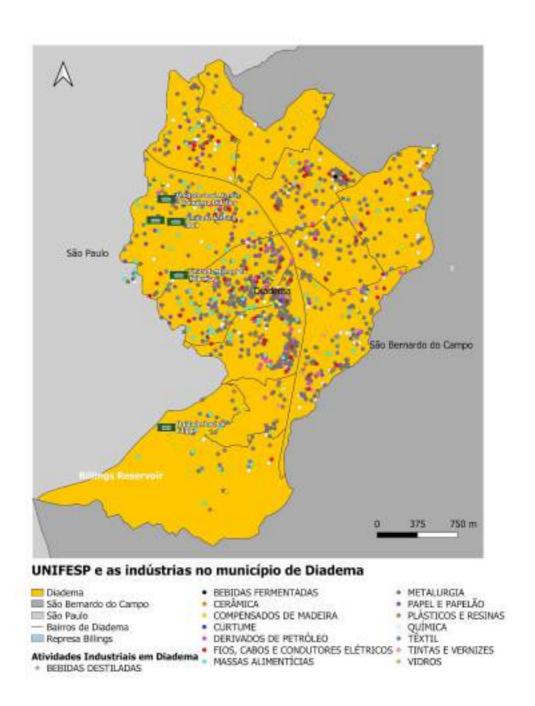
Embora os serviços abarquem a maior parcela do valor adicionado e dos postos de trabalho, a RMSP mantém elevada participação na produção industrial do Estado (é também a maior produção industrial do país) e concentra os setores de produção de bens com alto valor agregado e conteúdo tecnológico.

A região do ABC tem localização privilegiada, pela proximidade com o município de São Paulo, o Aeroporto Internacional de Guarulhos e o Porto de Santos, acompanhando ferrovias e rodovias. Nessa região encontram-se grandes aglomerações industriais, como o Polo Petroquímico de Capuava, localizado entre Santo André e Mauá, e o Polo Industrial do Sertãozinho, em Mauá.

A estrutura da indústria da região do ABC tem expressiva presença do setor de bens de capital. Sua principal divisão industrial é a produção automobilística e de autopeças. Incluem-se, ainda, as divisões de máquinas e equipamentos, produtos de borracha e plástico, produtos de metal e metalurgia básica, indústrias químicas e petroquímica, de embalagens, de artigos de mobiliário, de vestuário e acessórios, cosméticos e de alimentos. Neste contexto, é imprescindível a formação de mão de obra altamente qualificada para atuação nas indústrias e centros de pesquisa da RMSP, bem como em outras regiões brasileiras que também demandam estes profissionais.

Diadema destaca-se na RMSP por ser uma cidade densamente povoada, com relativamente bons índices em educação, com 96,8% de sua população de seis a 14 anos em processo de escolarização, de acordo com o último censo (2010). O PIB per capita do município, estimado em 2021, é de R\$ 36.097,90/habitante, totalizando um PIB de R\$ 15,5 bilhões (IBGE, 2022). A Figura 8 apresenta a distribuição geográfica das indústrias do município de Diadema, representadas pelos seus respectivos segmentos. Pode-se observar que o bairro Conceição concentra o maior número de indústrias registradas. Por outro lado, a região do Eldorado, onde há uma

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema


unidade do *Campus*, perto da represa Billings, é a que possui um menor número de indústrias.

Mais da metade das indústrias de Diadema (54,64%) estão localizadas nos bairros Conceição, Casa Grande, Serraria e Centro. Os segmentos de metalurgia, plásticos e resinas estão mais concentrados no centro da cidade, ao lado esquerdo da Rodovia dos Imigrantes, sendo os segmentos de massas alimentícias, cosméticos e produtos de limpeza bem distribuídos por toda a cidade, com exceção do bairro Eldorado. Esta diversidade e grande número de indústrias no município é um grande potencial de inserção profissional dos alunos do curso, de desenvolvimento de projetos e parcerias com empresas, assim como de realização de projetos de extensão universitária.

Figura 8: As unidades do *Campus* Diadema da Unifesp inseridas no contexto industrial do município (Elaboração própria).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

De acordo com o site do MEC, o Brasil possui 153 instituições públicas de ensino superior (federais e estaduais), dentre as quais estão consideradas Faculdades, Universidades, Institutos e Centros Universitários.

O Brasil possui 68 universidades federais, das quais três delas estão no Estado de São Paulo (Unifesp, UFABC e UFSCar).

Conforme o último *Ranking* Universitário Folha (RUF-2019), a Unifesp encontra-se na 16ª posição dentre as melhores instituições públicas de ensino superior no país. Por outro lado, de acordo com o QS World University *Ranking* 2021, a Unifesp obteve a quarta colocação como a melhor instituição de ensino superior do Brasil. No ranking mundial, a instituição aparece na 420ª posição dentre as melhores no mundo. A Unifesp se destacou na 30ª posição na América Latina e 57ª no espectro que abrange universidades em países que compõem o BRIC (Brasil, Rússia, Índia e China).

O MEC lista 329 cursos de Engenharia Química no Brasil, sendo que 256 são presenciais, 68 são de instituições públicas e cinco estão localizados no Estado de São Paulo. A RMSP conta com apenas oito cursos de Engenharia Química, dois deles ofertados por universidades públicas (USP e Unifesp) e seis por instituições privadas. Ressalta-se ainda que somente a Unifesp (*Campus* Diadema) apresenta um curso noturno gratuito na RMSP, implantado em 2010, além do seu curso integral iniciado em 2007.

O Campus Diadema da Unifesp está localizado estrategicamente na RMSP próximo a indústrias de pequeno, médio e grande porte (Figura 8) ou dos seus centros administrativos. A localização privilegiada permite o contato direto dos alunos com as indústrias, facilitando a inserção no mercado de trabalho. Por outro lado, também permite a consolidação de projetos de pesquisa entre docentes e profissionais das indústrias que constantemente buscam soluções práticas, econômicas e sustentáveis para os problemas industriais.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

De acordo com o Guia da Faculdade do Jornal O Estado de São Paulo de 2021, o curso de Engenharia Química da Unifesp recebeu quatro estrelas, em uma escala que vai até cinco.

A CCEQ está em constante trabalho para melhorar ainda mais a classificação do curso nos principais *rankings* nacionais, em reconhecimento a todo o esforço de docentes, alunos e corpo técnico na garantia da qualidade do ensino entregue.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

5. OBJETIVOS DO CURSO

5.1 Objetivo Geral

O curso de Engenharia Química da Unifesp tem como objetivo a formação de um profissional com capacidade analítica, bons conhecimentos de biologia, sólidos conhecimentos de matemática, física, química e programação computacional. Além dos conhecimentos típicos da formação de um engenheiro químico, este profissional deve ser capaz de compreender e atuar no meio socioeconômico de forma técnica, ética e cidadã.

O Engenheiro Químico deve poder contribuir no avanço tecnológico e organizacional da moderna produção industrial, comprometida com sua eficiência, qualidade e competitividade, além de poder relacionar os problemas de natureza tecnológica, social, econômica e ambiental associados com os processos produtivos.

5.2 Objetivos Específicos

O curso de Engenharia Química da Unifesp tem os seguintes objetivos específicos:

- Conciliar a visão da instituição às aspirações do corpo docente e discente e às necessidades da comunidade em que o curso está inserido;
- Formar profissionais com sólidos conhecimentos técnicos e científicos, habilitados para se adaptar às novas tecnologias e atuar em diferentes formas de trabalho decorrentes da dinâmica evolutiva da sociedade atual;
- Proporcionar aos alunos uma sólida preparação nas áreas básicas, técnicas, gerenciais e humanas;

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

- Preparar adequadamente e incentivar os estudantes no desenvolvimento das capacidades e/ou habilidades necessárias para a investigação técnica e científica;
- Fortalecer e/ou criar o espírito de colaboração de tal maneira que discentes e docentes possam trabalhar efetivamente em equipe e em projetos multidisciplinares;
- Conscientizar os discentes sobre o compromisso com a preservação do meio ambiente e a utilização racional dos recursos naturais;
- Habilitar o engenheiro químico para atividades de concepção, implementação, utilização e manutenção de unidades de produção;
- Habilitar o engenheiro químico para atuar na área de pesquisa e desenvolvimento de processos e produtos;
- Formar profissionais empreendedores, capazes de tomar decisões que satisfaçam as necessidades das organizações e dos clientes, com a perspectiva de geração de novos empregos.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

6. PERFIL DO EGRESSO

O Conselho Nacional do Ministério da Educação (MEC) propõe nas diretrizes curriculares (Resolução nº 2 de 24 de abril de 2019³) que o perfil desejado para o profissional egresso dos cursos de engenharia química seja: Formação generalista, formação humanista, crítica e reflexiva, capacitado a absorver e desenvolver novas tecnologias, estimulando a sua atuação crítica e criativa na identificação e resolução de problemas, considerando seus aspectos políticos, econômicos, sociais, ambientais e culturais com visão ética e humanista, em atendimento às demandas da sociedade.

O Engenheiro Químico formado pela Unifesp é incentivado a aplicar o conhecimento tecnológico, observando as potencialidades da região, rica em indústrias de transformação, mostrando a necessidade de se adaptar, desenvolver tecnologia para aplicação nos processos de matérias-primas e desenvolver novos processos e produtos.

O engenheiro graduado em Engenharia Química pela Unifesp deverá possuir as seguintes aptidões:

- Capacidade de interpretação, elaboração, execução e gerenciamento de projetos de unidades operacionais e plantas de indústrias químicas, bioquímicas, petroquímicas etc.;
- Capacidade de trabalho em equipes multidisciplinares e transdisciplinares;
- Capacidade de gerenciamento, operação e manutenção de sistemas e processos químicos;
- Habilidade de resolver problemas com flexibilidade e criatividade face aos diferentes contextos organizacionais e sociais;
- Capacidade de desenvolvimento e aplicação de modelos empíricos e fenomenológicos aplicados à engenharia química;

³ministério da educação conselho nacional de educação câmara de educação superior resolução nº 2, de 24 de abril de 2019

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

- Capacidade de adaptação à evolução da tecnologia das áreas de química, petroquímica, bioquímica e programação computacional;
- Visão ética e humanística que lhe permita exercer suas funções de forma consciente e responsável.

6.1 Área de Atuação do Engenheiro Químico

O campo de atuação do Engenheiro Químico é amplo e diversificado, sendo regulamentado pelo CREA (Conselho Regional de Engenharia, Arquitetura e Agronomia) ou pelo CRQ (Conselho Regional de Química).

A atuação de um Engenheiro Químico é necessária nas mais diversas atividades do cotidiano de uma sociedade, sejam elas industriais (químicas, inseticidas e agroquímicas, petroquímicas, processamento de alimentos, cerâmica, cimento, vidro, bebidas alcoólicas e não-alcoólicas, cosméticos e perfumes, aromatizantes e aditivos alimentares, sabões e detergentes, açúcar, fertilizantes, nucleares, tintas, pigmentos, vernizes, papel e celulose, plásticos, farmacêutica, borracha, madeira, fibras sintéticas, dentre outras); serviços (vendas, assistência técnica, educação, direito, editoração, finanças, tratamento de águas industriais e de abastecimento, tratamento de resíduos sólidos, remoção de material particulado do ar, estudo de impacto ambiental, reciclagem, recuperação e preservação ambiental) e pesquisa em química fina, novos materiais (supercondutores, superligas, fibras óticas e outros) e bioengenharia (química médica e microeletrônica).

As atividades desenvolvidas pelo profissional da Engenharia Química consistem na elaboração, dimensionamento, construção, projetos de instalação e/ou expansão de indústrias, avaliação econômica e financeira, execução de projetos, controle, gestão, operação e otimização de indústrias, assegurando a qualidade do produto, a eficiência técnica e econômica dos processos produtivos e a minimização de impactos, sejam eles, ambientais ou à saúde humana.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

6.2 Acompanhamento do Egresso

Em 2016, foi dado início ao acompanhamento dos egressos. No primeiro momento, a Secretaria de Graduação encaminhou um formulário apenas aos formandos de 2015 para mapeamento de suas ocupações, obtendo uma resposta não representativa. Este acompanhamento foi intensificado a partir de uma estratégia definida em 2016 em conjunto com a Câmara de Graduação do *Campus* Diadema, a Secretaria Acadêmica de Graduação e as coordenações dos demais cursos do *Campus*. O principal objetivo desta estratégia foi a geração de um mapa detalhado sobre os egressos do *Campus*, de forma a identificar melhor sua adequação e/ou absorção no mercado de trabalho, nível de satisfação com o curso, suas críticas e sugestões.

Em 2017, foi criada pela Comissão de Curso da Engenharia Química, uma subcomissão assessora, a Comissão de Egressos, para continuar os trabalhos de acompanhamento dos alunos egressos do curso. Um dos problemas institucionais da Unifesp é o contato com os alunos que já concluíram o curso, pois só consegue-se contatá-los pelo e-mail cadastrado na Unifesp. Essa Comissão desenvolveu formulário para preenchimento, identificando o tipo de atividade que os ex-alunos estão desenvolvendo, se estão empregados, cargos, faixa salarial e contribuição do curso e da Unifesp em sua vida profissional. Os alunos são identificados por redes sociais, tais como Linkedin, Facebook e Instagram e são incentivados a preencher o formulário. Os resultados do preenchimento deste formulário constituirá uma das diretrizes que nortearão as ações da Comissão do Curso de Engenharia Química no sentido de reavaliar o processo de ensino/aprendizagem em suas Unidades Curriculares, identificar possíveis demandas por assuntos que eventualmente não estejam sendo adequadamente abordados na Matriz Curricular atual e, também, rever periodicamente as estratégias didático-pedagógicas de forma a promover as melhorias que se fizerem necessárias ou desejadas.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

O relatório da Comissão de Egressos do período 2018-2020 está disponível no site do curso de Engenharia Química:

http://eq.diadema.sites.unifesp.br/index.php/egressos

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

7. ORGANIZAÇÃO CURRICULAR

Os componentes curriculares, discutidos e aprovados na Comissão do Curso de Engenharia Química, visam garantir a formação humana, ética e profissional, tendo como referenciais as diretrizes institucionais e os padrões de qualidade estabelecidos pelo Conselho Nacional de Educação (CNE), por meio do Sistema de Avaliação da Educação Superior, especificamente aqueles relacionados às avaliações dos cursos de graduação.

A formação do profissional é orientada por um conjunto de requisitos, normas e procedimentos que definem um modelo de sistema de ensino, incluindo o acompanhamento e a avaliação de desempenho para toda a Instituição. Esse conjunto de normas e procedimentos encontra-se no Regimento Geral da Unifesp e no Regimento Interno da Pró-Reitoria de Graduação (ProGrad). No entanto, cada curso possui autonomia para definir o formato pelo qual os processos de ensino, acompanhamento e avaliação podem se desenvolver. No caso do Curso de Engenharia Química, a coordenação e o corpo docente preocupam-se em promover a integração entre o ensino, a pesquisa e a extensão, por meio de atividades que estimulem, no acadêmico, a vontade de estabelecer contatos, de desenvolver empreendimentos, de construir novos conceitos, de aplicar os conhecimentos adquiridos para o desenvolvimento da região e de participar de programas de pós-graduação internos ou externos. A variedade de atividades e os recursos disponíveis permitem o desenvolvimento, tanto do perfil técnico e científico, quanto do enfoque humano e social do acadêmico.

Aspecto importante a ser considerado, o curso de Engenharia Química busca atender a política inclusiva das Pessoas com Deficiência, pautada pelos princípios preconizados pela Convenção sobre os Direitos das Pessoas com Deficiência, dentre os quais, ressaltam-se, de acordo com a Resolução CONSU nº 164, de 14 de novembro de 2018:

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

- I O respeito pela dignidade inerente, a autonomia individual, a privacidade, inclusive a liberdade de fazer as próprias escolhas, e a independência das pessoas;
- II A não-discriminação;
- III A plena e efetiva participação e inclusão na sociedade;
- IV O respeito à diferença e a aceitação das pessoas com deficiência como parte da diversidade humana e da humanidade;
- V A igualdade de oportunidades;
- VI A acessibilidade.
- O Projeto Pedagógico proposto pela Comissão do Curso atende às Diretrizes Curriculares estabelecidas pelo Conselho Nacional de Educação, apresentando uma estrutura curricular organizada por:
- Aulas teóricas em salas de aula, utilizando quadros e recursos de multimídia;
- Aulas práticas realizadas em laboratórios envolvendo experimentos em diferentes áreas do conhecimento: física, química, biologia, informática, simulações computacionais, fenômenos de transporte, operações unitárias, eletrotécnica, reatores químicos, eletroquímicos e bioquímicos, tratamento de efluentes industriais e controle de processos;
- Palestras ministradas por profissionais da área de engenharia química e afins;
- Acesso ilimitado à Internet para atividades acadêmicas;
- Uso de ambientes virtuais (Moodle e Google Classroom) de apoio pedagógico nas Unidades Curriculares visando facilitar a comunicação entre docentes e discentes, a distribuição de materiais didáticos, possibilitar a realização de discussões mediadas por professores e a realização de atividades;
- Programa de incentivo à Iniciação Científica voluntárias e com bolsas PIBIC (CNPq), PIBITI (CNPq), FAPESP, monitorias e outras;
- Projetos, programas e atividades de extensão universitária;

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

- Atividades integralizadoras, contempladas essencialmente nas unidades curriculares de Modelagem e Análise de Sistemas, Síntese e Otimização de Processos, Simulação de Processos, Análise e Controle de Processos, Operações Unitárias I, II e III, Projetos de Processos Químicos, Projetos de Instalações Químicas, Laboratórios de Engenharia Química I, Laboratórios de Engenharia Química III e finalmente nos TCC's I e II;
- Atividades complementares.

O projeto educacional visa ainda formar profissionais empreendedores e autônomos com ampla área de atuação. O curso contempla a formação específica do profissional em Engenharia Química, proporcionando conhecimentos necessários para o desenvolvimento de trabalhos e projetos nas diversas áreas de atuação profissional.

A interdisciplinaridade de áreas do conhecimento como as ciências sociais, biológicas, humanas e exatas promove a formação de um profissional melhor qualificado e com maior adaptação às oportunidades do mercado de trabalho. Esse aspecto pode ser verificado tanto nos conteúdos abordados na gama de UCs do curso, quanto nas linhas de pesquisa, projetos de extensão e atuação dos docentes. Neste contexto, é importante ressaltar as UCs Laboratório de Engenharia Química I, Laboratório de Engenharia Química II e Laboratório de Engenharia Química III que são vocacionadas na interdisciplinaridade na abordagem dos experimentos e nos aspectos didáticos dos professores que colaboram nestas UCs. Isto também é observado nas UCs de Simulação de Processos, Projeto de Processos Químicos e Projetos de Instalações Químicas.

É importante ressaltar que a organização curricular do curso atende às resoluções do Conselho Nacional de Educação apresentadas a seguir:

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

- Educação em Direitos Humanos: Resolução CNE/CP nº 1, de 30 de maio de 2012: conteúdo abordado na Unidade Curricular *Administração*;
- Educação das Relações Étnico-Raciais e para o Ensino da História e Cultura Afro-Brasileira e Africana: Resolução CNE/CP nº 1, de 17 de junho de 2004: conteúdo abordado na Unidade Curricular *Metodologia Científica*;
- Educação Ambiental: Resolução CNE/CP nº 2, de 15 de junho de 2012: conteúdo abordado na Unidade Curricular *Processos para Tratamento de Efluentes*;
- Libras Decreto nº 5.626, de 22 de dezembro de 2005: conteúdo abordado na Unidade Curricular optativa denominada Libras.

O Curso de Engenharia Química da Unifesp disponibiliza, para todas as suas Unidades Curriculares, as plataformas de ensino à distância Moodle e Google Classroom como ferramentas pedagógicas auxiliares. Com o uso destas plataformas, os alunos podem acessar o material didático apresentado em sala de aula, bem como obter listas de exercícios sugeridos e arquivos com códigos e algoritmos de computador, enviar relatórios de aulas práticas, verificar os relatórios de avaliação disponibilizados pelo professor, utilizar o fórum de dúvidas e estabelecer canais de comunicação direta via chats ou mesmo enviar mensagens via e-mail para o professor. Além disso, o docente pode divulgar importantes informações como as datas das avaliações e das vistas de provas, facilitando, assim, o acompanhamento do desenvolvimento da Unidade Curricular por parte do aluno. Nesse contexto, deve-se ressaltar que, com o advento da pandemia da COVID-19, nos anos de 2020 e 2021, outras ferramentas didáticas foram incorporadas às práticas pedagógicas, tais como a disponibilização de atividades, quizzes no Moodle e Google Classroom, além de vídeos e aulas gravadas pelos docentes, usando diferentes ferramentas de gravação e edição, sendo os materiais disponibilizados aos alunos no Google Classroom ou no YouTube. Os alunos também incorporaram esta prática às suas tarefas, projetos e seminários, preparando diversos materiais no formato de vídeos gravados, os quais, em alguns

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

casos, também eram disponibilizados para divulgação e consulta na internet para a sociedade de forma geral, incentivando, dessa forma, as práticas extensionistas do curso. Ademais, deve-se salientar que, além do Moodle e do Google Classroom, o Curso de Engenharia Química também disponibiliza, para todas as Unidades Curriculares, o Google Meet, que consiste em uma poderosa ferramenta de comunicação *on-line*, sendo uma eficiente forma de contato entre os docentes e os alunos.

O Curso de Engenharia Química da Unifesp procura atender às sugestões da Resolução n°2, de 24 de abril de 2019, da Câmara de Educação Superior do Conselho Nacional de Educação que institui Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia³.

Em sua estrutura curricular, as respectivas unidades curriculares estão distribuídas em 6 grupos, a saber:

- Unidades Curriculares de Formação Básica: definidas de acordo com recomendações do artigo 9°, parágrafo primeiro, da Resolução n°2, de 24 de abril de 2019;
- Unidades Curriculares de Formação Profissionalizante: consideradas as unidades curriculares de formação profissionalizante geral;
- Unidades Curriculares de Formação Específica: unidades curriculares específicas de formação da Engenharia Química;
- Trabalho de Conclusão de Curso;
- Estágio Supervisionado;
- Atividades Complementares.

A distribuição dos Conteúdos Curriculares dos Cursos de Graduação em Engenharia Química da Universidade Federal de São Paulo (períodos Integral e Noturno) é apresentada a seguir, totalizando uma carga horária obrigatória de 4.264 horas.

³RESOLUÇÃO Nº 2, DE 24 DE ABRIL DE 2019 - DOU - Imprensa Nacional

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

7.1 Unidades Curriculares do Núcleo de Conteúdos Básicos (1710 h)

Administração (72 h)

Algoritmos e Programação Computacional (72 h)

Cálculo I (72 h)

Cálculo II para Engenharia Química (72 h)

Cálculo III (72 h)

Cálculo Numérico (72 h)

Ciência e Engenharia dos Materiais (72 h)

Desenho Técnico (54 h)

Economia (72 h)

Estatística (72 h)

Estrutura da Matéria (72 h)

Fenômenos de Transporte I (72 h)

Física I (72 h)

Física III (72 h)

Física IV (72 h)

Físico-Química (36 h)

Fundamentos de Álgebra Linear e Geometria Analítica - FALGA (72 h)

Fundamentos de Bioquímica e Biologia Celular (72 h)

Fundamentos de Mecânica e Resistência dos Materiais (72 h)

Metodologia Científica (36 h)

Química Analítica Geral I (72 h)

Química Analítica Geral II (72 h)

Química Geral (72 h)

Química Geral Experimental (72 h)

Química Orgânica (72 h)

7.2 Unidades Curriculares do Núcleo de Conteúdos Profissionalizantes (576 h)

Análise Instrumental (72 h)

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Balanço de Massa e Energia (72 h)

Cálculo IV (72 h)

Eletrotécnica Aplicada à Engenharia Química (36 h)

Fenômenos de Transporte II (72 h)

Introdução à Engenharia Química (36 h)

Princípios de Automação e Instrumentação (36 h)

Química Orgânica Experimental (108 h)

Termodinâmica I (72 h)

7.3 Unidades Curriculares do Núcleo de Conteúdos Específicos (1404 h)

Análise e Controle de Processos (72 h)

Engenharia Bioquímica (54 h)

Eletroquímica Aplicada (54 h)

Fenômenos de Transporte III (72 h)

Laboratório de Engenharia Química I (72 h)

Laboratório de Engenharia Química II (72 h)

Laboratório de Engenharia Química III (72 h)

Modelagem e Análise de Sistemas (72 h)

Operações Unitárias I (72 h)

Operações Unitárias II (72 h)

Operações Unitárias III (72 h)

Processos Químicos Industriais (36 h)

Processos para Tratamento de Efluentes (72 h)

Projeto de Processos Químicos (72 h)

Projeto de Instalações Químicas (72 h)

Reatores Químicos I (72 h)

Reatores Químicos II (72 h)

Segurança Industrial (36 h)

Síntese e Otimização de Processos (72 h)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Simulação de Processos (72 h) Termodinâmica II (72 h)

7.4 Estágio Supervisionado (160 h)

Estágio Supervisionado (160 h)

7.5 Trabalho de Conclusão de Curso (210 h)

Trabalho de Conclusão de Curso I (TCC-I) (102 h)
Trabalho de Conclusão de Curso II (TCC-II) (108 h)

7.6 Atividades Complementares (60 h)

Atividades Complementares (60 h)

7.7 Unidades Curriculares Eletivas (144 h)

Há uma oferta ampla de unidades curriculares eletivas no curso de Engenharia Química. O aluno tem que cumprir o mínimo de 144 h de eletivas. São oferecidas eletivas de formação geral (básica), profissionalizantes e específicas com diferentes cargas horárias. Há disciplinas eletivas com 36 h, 54 h e 72 h e o aluno pode cursar um rol amplo de disciplinas de diferentes espectros formativos.

7.8 Atividades Extensionistas (426 h)

A carga horária das atividades de extensão no curso foram incorporadas às Unidades Curriculares de Laboratório de Engenharia Química I (72 h), Laboratório de Engenharia Química II (72 h), Laboratório de Engenharia Química III (72 h), TCC-I (102 h) e TCC-II (108 h). Assim, todas estas disciplinas tornam-se 100% extensionistas e as práticas laboratoriais e projetos desenvolvidos pelos discentes e docentes nestas UCs agregam-se às propostas dos projetos de extensão

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

vinculados, podendo ser um intercâmbio entre sociedade e universidade na divulgação de conhecimento e também utilizando este espaço das práticas e projetos na busca de soluções de problemas locais e interação com a sociedade.

Um resumo da distribuição da carga horária dos grupos das Unidades Curriculares da nova Matriz Curricular pode ser visto na Tabela 2.

Tabela 2: Distribuição da carga horária dos grupos das unidades curriculares da matriz do curso de Engenharia Química.

Grupos das Unidades	Carga Horária
Curriculares	(horas)
Fixas	3.690*
Eletivas	144
Estágio	160
TCC	210
Atividades Complementares	60
Total	4.264

^{*}Estão incluídas nas Unidades Curriculares fixas as 426 h de Atividades Extensionistas do curso (10% da carga horária total), conforme Lei nº 13.005/2014.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

7.8 Matriz Curricular

A disposição e apresentação das Unidades Curriculares foram estabelecidas de modo a garantir um projeto articulado, integrador e que permita uma prática educativa, sendo docentes e discentes sujeitos integrantes e atuantes no processo de ensino e aprendizagem.

Destaca-se o grande esforço em atividades práticas, presentes em Unidades Curriculares de conteúdos básicos, profissionalizantes e específicos, além de atividades integralizadoras como aquelas desenvolvidas nas Unidades Curriculares Modelagem e Análise de Sistemas, Síntese e Otimização de Processos, Análise e Controle de Processos, Operações Unitárias I, II e III, Simulação de Processos, Projetos de Processos Químicos, Projetos de Instalações Químicas, Laboratórios de Engenharia Química I, II e III, Trabalho de Conclusão de Curso I e Trabalho de Conclusão de Curso II.

As novas Matrizes Curriculares dos Cursos de Graduação em Engenharia Química, período integral e noturno, estão apresentadas nas Tabelas 3 e 4, respectivamente, com as cargas horárias de cada Unidade Curricular e os Termos nas quais são ministradas. A carga horária de eletivas que o estudante deve cumprir é aquela que consta na matriz do termo em que sugere-se que sejam cursadas, totalizando 144 h, como Unidade Curricular optativa, tem-se a Unidade Curricular LIBRAS com uma carga horária de 40 h. Nas Tabelas 3 e 4 estão representadas as Unidades Curriculares de formação básica em amarelo, de formação profissionalizante em verde e as de formação específica em azul. Além disso, estão destacadas as Unidades Curriculares Eletivas, Estágio Supervisionado, TCC-I, TCC-II, Atividades Complementares e Libras em laranja. Também estão destacadas as Unidades Curriculares Extensionistas, juntamente com a carga horária delas.

Todos os alunos do curso devem migrar para esta matriz curricular. Desta forma, as novas regras de estágio, pré-requisitos e de atividades complementares deverão ser cumpridas por todos os alunos em curso e não somente os ingressantes em 2023.

Tabela 3: Matriz Curricular do Curso de Engenharia Química - Período Integral.

1º Termo	2º Termo	3º Termo	4º Termo	5° Termo	6º Termo	7º Termo	8º Termo	9º Termo	10° Termo
Algoritmos e Programação Computacional (72 h)	Cálculo II para Engenharia Química (72 h)	Balanço de Massa e Energia (72 h)	Análise Instrumental (72 h)	Administração (72 h)	Economia (72 h)	Eletroquímica Aplicada (54 h)	Análise e Controle de Processos (72 h)	Processos para Tratamento de Efluentes (72 h)	Projeto de Instalações Químicas (72 h)
Cálculo I (72 h)	Cálculo Numérico (72 h)	Cálculo III (72 h)	Cálculo IV (72 h)	Ciência e Engenharia dos Materiais (72 h)	Fenômenos de Transporte III (72 h)	Fundamentos de Bioquímica e Biologia Celular (72 h)	Engenharia Bioquímica (54 h)	Projeto de Processos Químicos (72 h)	Trabalho de Conclusão de Curso II (TCC II) (108 h)
Desenho Técnico (54 h)	Estatística (72 h)	Física III (72 h)	Fenômenos de Transporte I (72 h)	Eletrotécnica Aplicada à Engenharia Química (36 h)	Laboratório de Engenharia Química I (72 h	Laboratório de Engenharia Química II (72 h)	Laboratório de Engenharia Química III (72 h)	Segurança Industrial (36 h)	Unidade Curricular Eletiva (72 h)
Fundamentos de Álgebra e Geometria Analítica (72 h)	Estrutura da Matéria (72 h)	Físico-Química (36 h)	Física IV (72 h)	Fenômenos de Transporte II (72 h)	Modelagem e Análise de Sistemas (72 h)	Operações Unitárias III (72 h)	Processos Químicos Industriais (36 h)	Trabalho de Conclusão de Curso I (TCC I) (102 h)	
Metodologia Científica (36 h)	Física I (72 h)	Fundamentos de Mecânica e Resistência dos Materiais (72 h)	Química Orgânica Experimental (108 h)	Operações Unitárias I (72 h)	Operações Unitárias II (72 h)	Reatores Químicos II (72 h)	Síntese e Otimização de Processos (72 h)	Unidade Curricular Eletiva (72 h)	
Química Geral (72 h)	Introdução à Engenharia Química (36 h)	Química Analítica Geral II (72 h)	Termodinâmica I (72 h)	Termodinâmica II (72 h)	Reatores Químicos I (72 h)	Simulação de Processos (72 h)			
Química Geral Experimental (72 h)	Química Analítica Geral I (72 h)	Química Orgânica (72 h)		Princípios de Automação e Instrumentação (36 h)					
Carga horária to	otal do curso	4264 h		Unidades curriculares fixas e optativa não vinculadas a um termo específico			Atividades Complementares (60 h)	Estágio Supervisionado (160 h)	Libras (Optativa) (40 h)
Carga horária ex total	xtensionista	426 h		Carga Horária Extensionista	Laboratório de Engenharia Química I (72 h)	Laboratório de Engenharia Química II (72 h)	Laboratório de Engenharia Química III (72 h)	Trabalho de Conclusão de Curso I (102 h)	Trabalho de Conclusão de Curso II (108 h)

Tabela 4: Matriz Curricular do Curso de Engenharia Química – Período Noturno.

1º Termo	2º Termo	3º Termo	4º Termo	5° Termo	6º Termo	7º Termo	8º Termo	9º Termo	10° Termo	11º Termo	12º Termo
Cálculo I (72 h)	Algoritmos e Programação Computacional (72 h)	Cálculo III (72 h)	Balanço de Massa e Energia (72 h)	Fenômenos de Transporte I (72 h)	Ciência e Engenharia dos Materiais (72 h)	Análise Instrumental (72 h)	Administração (72 h)	Economia (72 h)	Eletroquímica Aplicada (54 h)	Análise e Controle de Processos (72 h)	Projeto de Instalações Químicas (72 h)
Fundamentos de Álgebra e Geometria Analítica (72 h)	Cálculo II para Engenharia Química (72 h)	Cálculo Numérico (72 h)	Cálculo IV (72 h)	Química Analítica Geral I (72 h)	Fenômenos de Transporte II (72 h)	Fenômenos de Transporte III (72 h)	Fundamentos de Bioquímica e Biologia Celular (72 h)	Engenharia Bioquímica (54 h)	Eletrotécnica Aplicada à Engenharia Química (36 h)	Laboratório de Engenharia Química III (72 h)	Segurança Industrial (36 h)
Metodologia Científica (36 h)	Desenho Técnico (54 h)	Estatística (72 h)	Física IV (72 h)	Química Orgânica Experimental (108 h)	Operações Unitárias I (72 h)	Laboratório de Engenharia Química I (72 h)	Laboratório de Engenharia Química II (72 h)	Modelagem e Análise de Sistemas (72 h)	Princípios de Automação e Instrumentação (36 h)	Projeto de Processos Químicos (72 h)	Trabalho de Conclusão de Curso II (TCC II) (108 h)
Química Geral (72 h)	Estrutura da Matéria (72 h)	Física III (72 h)	Fundamentos de Mecânica e Resistência dos Materiais (72 h)	Termodinâmica I (72 h)	Química Analítica Geral II (72 h)	Operações Unitárias II (72 h)	Operações Unitárias III (72 h)	Processos Químicos Industriais (36 h)	Processos para Tratamento de Efluentes (72 h)	Síntese e Otimização de Processos (72 h)	Unidade Curricular Eletiva (72 h)
Química Geral Experimental (72 h)	Física I (72 h)	Físico-Química (36 h)	Química Orgânica (72 h)		Termodinâmica II (72 h)	Reatores Químicos I (72 h)	Reatores Químicos II (72 h)	Unidade Curricular Eletiva (72 h)	Simulação de Processos (72 h)	Trabalho de Conclusão de Curso I (TCC I) (102 h)	
		Introdução à Engenharia Química (36 h)									
Carga horária	a total do	4264 h		Unidades curriculares fixas e optativa não vinculadas a um termo específico			Atividades Complementares (60 h)	Estágio Supervisionado (160 h)	Libras (Optativa) (40 h)		
Carga horária extensionista		426 h			Unidades curriculares Extensionistas Laboratório de Engenharia Química I (72 h) Laboratório de Engenharia Química I (72 h)			Laboratório de Engenharia Química III (72 h)	Trabalho de Conclusão de Curso I (102 h)	Trabalho de Conclusão de Curso II (108 h)	

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

As Tabelas 5 e 6 apresentam a disposição das Unidades Curriculares em cada Termo da matriz curricular dos cursos de Engenharia Química da Unifesp nos períodos integral e noturno, respectivamente, bem como a relação dos pré-requisitos obrigatórios exigidos para que os alunos possam se matricular em uma determinada Unidade Curricular.

Além de ter cursado os pré-requisitos obrigatórios, para que o aluno possa aproveitar, da melhor forma, o conteúdo programático das Unidades Curriculares, recomenda-se que o discente já tenha cursado, ou esteja cursando, em paralelo, algumas Unidades Curriculares correlatas, denominadas como pré-requisitos recomendados, que também são apresentados nas Tabelas 5 e 6. É importante salientar que, diferentemente dos pré-requisitos obrigatórios, o não cumprimento dos pré-requisitos recomendados não impossibilita a matrícula dos alunos nas respectivas Unidades Curriculares. Porém, a Coordenação do Curso de Engenharia Química da Unifesp realizará um trabalho intenso e contínuo de divulgação e de conscientização da importância do cumprimento dos pré-requisitos recomendados.

A Unidade Curricular Libras, por ser optativa, não é vinculada a nenhum Termo específico da matriz curricular.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Tabela 5: Pré-Requisitos (recomendados e obrigatórios) das Unidades Curriculares Fixas do Curso de Engenharia Química - Integral.

1° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Algoritmos e Programação Computacional	72	-	-
Cálculo I	72	-	-
Desenho Técnico	54	-	-
Fundamentos de Álgebra Linear e Geometria Analítica	72	-	-
Metodologia Científica	36	-	-
Química Geral	72	-	-
Química Geral Experimental	72	-	-
Carga Horária Total	450		

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Cálculo II para Engenharia Química	72	Fundamentos de Álgebra Linear e Geometria Analítica	Cálculo I
Cálculo Numérico	72	Fundamentos de Álgebra Linear e Geometria Analítica Cálculo I	Algoritmos e Programação Computacional
Estatística	72	Cálculo I	-
Estrutura da Matéria	72	-	-
Física I	72	-	-
Introdução à Engenharia Química	36	-	-
Química Analítica Geral I	72	-	Química Geral
Carga Horária Total	468		

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

3° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
		Introdução à	
Balanço de Massa e	72	Engenharia Química	_
Energia	12	Química Geral	
		Cálculo I	
Cálculo III	72		Cálculo II para
Calculo III		-	Engenharia Química
Física III	72	-	Cálculo I
risica III			Física I
Físico-Química	36	-	Química Geral
Fundamentos de			
Mecânica e	72	Física I	-
Resistência dos Materiais			
Química Analítica Geral II	72	-	Química Analítica Geral I
Química Orgânica	72	-	Estrutura da Matéria
Carga Horária Total	468		

4° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Análise Instrumental	72	-	Química Analítica Geral II
Cálculo IV	72	-	Cálculo III
Fenômenos de Transporte I	72	Balanço de Massa e Energia	Cálculo II para Engenharia Química
Física IV	72	-	Cálculo III Física III
Química Orgânica Experimental	108	-	Química Orgânica
Termodinâmica I	72	Balanço de Massa e Energia	Cálculo II para Engenharia Química
Carga Horária Total	468		

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Administração	72	Estatística	-
Ciência e Engenharia dos Materiais	72	Estrutura da Matéria	-
Eletrotécnica Aplicada à Engenharia Química	36	Física III	-
Fenômenos de Transporte	72	Cálculo IV	Fenômenos de Transporte I
Operações Unitárias I	72	-	Fenômenos de Transporte l
Princípios de Automação e Instrumentação	36	Física III	-
Termodinâmica II	72	Termodinâmica I	-
Carga Horária Total	432		

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Economia	72	Cálculo I	-
Fenômenos de Transporte	72	Cálculo IV Fenômenos de Transporte II	Fenômenos de Transporte I
Laboratório de Engenharia Química I	72*	-	Fenômenos de Transporte II
Modelagem e Análise de Sistemas	72	Cálculo III Fenômenos de Transporte II	Cálculo Numérico
Operações Unitárias II	72	-	Fenômenos de Transporte II
Reatores Químicos I	72	-	Balanço de Massa e Energia
Carga Horária Total	432		

^{*}Carga horária 100% extensionista.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Eletroquímica Aplicada	54	Reatores Químicos I	-
Fundamentos de Bioquímica e Biologia Celular	72	-	-
Laboratório de Engenharia Química II	72*	Operações Unitárias I Operações Unitárias III**	Operações Unitárias II
Operações Unitárias III	72	Termodinâmica II	Fenômenos de Transporte III
Reatores Químicos II	72	Reatores Químicos I Fenômenos de Transporte III	-
Simulação de Processos	72	-	Modelagem e Análise de Sistemas
Carga Horária Total	414		

^{*}Carga horária 100% extensionista.

^{**}Recomendado estar cursando ou já ter cursado.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Análise e Controle de Processos	72	Cálculo IV Modelagem e Análise de Sistemas Princípios de Automação e Instrumentação Reatores Químicos I	-
Engenharia Bioquímica	54	Reatores Químicos I	Fundamentos de Bioquímica e Biologia Celular
Laboratório de Engenharia Química III	72*	Engenharia Bioquímica** Análise e Controle de Processos*	Reatores Químicos II
Processos Químicos Industriais	36	Balanço de Massa e Energia	-
Síntese e Otimização de Processos	72	-	Simulação de Processos
Carga Horária Total	306		

^{*}Carga horária 100% extensionista.

^{*}Recomendado estar cursando ou já ter cursado.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

9° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Processos para Tratamento de Efluentes	72	Engenharia Bioquímica Reatores Químicos I	-
Projeto de Processos Químicos	72	Operações Unitárias III	Operações Unitárias I Operações Unitárias II
Segurança Industrial	72	Processos Químicos Industriais	-
Trabalho de Conclusão de Curso I	102*	-	Laboratório de Engenharia Química II
Unidade Curricular Eletiva	72	-	-
Carga Horária Total	390		

^{*}Carga horária 100% extensionista.

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Projeto de Instalações Químicas	72	Desenho Técnico	Projeto de Processos Químicos
Trabalho de Conclusão de Curso II	108*	-	Trabalho de Conclusão de Curso I
Unidade Curricular Eletiva	72	-	-
Carga Horária Total	252		

^{*}Carga horária 100% extensionista.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

UC SEM TERMO DEFINIDO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Atividades Complementares	60	-	-
Estágio Supervisionado	160		Balanço de Massa e Energia Operações Unitárias I Análise Instrumental O acadêmico deverá obrigatoriamente inscrever-se em UCs que perfaçam pelo menos 50% (cinquenta por cento) da carga horária semanal prevista para o período letivo.
Carga Horária Total	220		

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Tabela 6: Pré-Requisitos (recomendados e obrigatórios) das Unidades Curriculares Fixas do Curso de Engenharia Química - Noturno.

1° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Cálculo I	72	-	-
Fundamentos de Álgebra Linear e Geometria	72	-	-
Analítica	. —		
Metodologia Científica	36	-	-
Química Geral	72	-	-
Química Geral	72		
Experimental	12	-	-
Carga Horária Total	324		

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Algoritmos e			
Programação	72	-	-
Computacional			
Cálculo II para Engenharia Química	72	Fundamentos de Álgebra Linear e Geometria Analítica	Cálculo I
Desenho Técnico	54	-	-
Estrutura da Matéria	72	-	-
Física I	72	-	-
Carga Horária Total	342		

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

3° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Cálculo III	72	-	Cálculo II para Engenharia Química
Cálculo Numérico	72	Fundamentos de Álgebra Linear e Geometria Analítica Cálculo I	Algoritmos e Programação Computacional
Estatística	72	Cálculo I	-
Física III	72	-	Cálculo I Física I
Físico-Química	36	-	Química Geral
Introdução à Engenharia Química	36	-	-
Carga Horária Total	360		

4º TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Balanço de Massa e Energia	72	Introdução à Engenharia Química Química Geral Cálculo I	-
Cálculo IV	72	-	Cálculo III
Física IV	72	-	Cálculo III Física III
Fundumentos de			
Mecânica e	72	Física I	-
Resistência dos Materiais			
Química Orgânica	72	-	Estrutura da Matéria
Carga Horária Total	360		

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

5° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Fenômenos de	70	Balanço de Massa e	Cálculo II para
Transporte I	72	Energia	Engenharia Química
Química Analítica Geral I	72	-	Química Geral
Química Orgânica Experimental	108	-	Química Orgânica
Termodinâmica I	72	Balanço de Massa e Energia	Cálculo II para Engenharia Química
Carga Horária Total	324		

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Ciência e Engenharia dos Materiais	72	Estrutura da Matéria	-
Fenômenos de Transporte II	72	Cálculo IV	Fenômenos de Transporte I
Operações Unitárias I	72	-	Fenômenos de Transporte l
Química Analítica Geral II	72	-	Química Analítica Geral I
Termodinâmica II	72	Termodinâmica I	-
Carga Horária Total	360		

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

7° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Análise Instrumental	72	-	Química Analítica Geral II
Fenômenos de Transporte III	72	Cálculo IV Fenômenos de Transporte II	Fenômenos de Transporte I
Laboratório de Engenharia Química I	72*	-	Fenômenos de Transporte II
Operações Unitárias II	72	-	Fenômenos de Transporte II
Reatores Químicos I	72	-	Balanço de Massa e Energia
Carga Horária Total	360		

^{*}Carga horária 100% extensionista.

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Administração	72	Estatística	-
Fundamentos de Bioquímica e Biologia Celular	72	-	-
Laboratório de Engenharia Química II	72*	Operações Unitárias I Operações Unitárias III**	Operações Unitárias II
Operações Unitárias III	72	Termodinâmica II	Fenômenos de Transporte III
Reatores Químicos II	72	Reatores Químicos I Fenômenos de Transporte III	-
Carga Horária Total	360		

^{*}Carga horária 100% extensionista.

^{*}Recomendado estar cursando ou já ter cursado.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

9° TERMO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Economia	72	Cálculo I	-
Engenharia Bioquímica	54	Reatores Químicos I	Fundamentos de Bioquímica e Biologia Celular
Modelagem e Análise de Sistemas	72	Cálculo III Fenômenos de Transporte II	Cálculo Numérico
Processos Químicos Industriais	36	Balanço de Massa e Energia	-
Unidade Curricular Eletiva	72	-	-
Carga Horária Total	306		

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Eletroquímica Aplicada	54	Reatores Químicos I	-
Eletrotécnica Aplicada à Engenharia Química	36	Física III	
Princípios de Automação e Instrumentação	36	Física III	-
Processos para Tratamento de Efluentes	72	Engenharia Bioquímica Reatores Químicos I	-
Simulação de Processos	72	-	Modelagem e Análise de Sistemas
Carga Horária Total	270		

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

11° TERMO

		II ILKWO	
UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Análise e Controle de Processos	72	Cálculo IV Modelagem e Análise de Sistemas Princípios de Automação e Instrumentação Reatores Químicos I	-
Laboratório de Engenharia Química III	72*	Engenharia Bioquímica** Análise e Controle de Processos*	Reatores Químicos II
Projeto de Processos Químicos	72	Operações Unitárias III	Operações Unitárias I Operações Unitárias II
Síntese e Otimização de Processos	72		Simulação de Processos
Trabalho de Conclusão de Curso I	102*	-	Laboratório de Engenharia Química II
Carga Horária Total	390		

^{*}Carga horária 100% extensionista.

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Projeto de Instalações Químicas	72	Desenho Técnico	Projeto de Processos Químicos
Segurança Industrial	36	Processos Químicos Industriais	-
Trabalho de Conclusão de Curso II	108*	-	Trabalho de Conclusão de Curso I
Unidade Curricular Eletiva	72	-	-
Carga Horária Total	288		

^{*}Carga horária 100% extensionista.

^{**}Recomendado estar cursando ou já ter cursado.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

UC SEM TERMO DEFINIDO

UNIDADE CURRICULAR	Carga Horária Semestral	Pré-requisito(s) recomendado(s)	Pré-requisito(s) obrigatório(s)
Atividades			
Complementares	60	-	-
Estágio Supervisionado	160		Balanço de Massa e Energia Operações Unitárias I Análise Instrumental O acadêmico deverá obrigatoriamente inscrever-se em UCs que perfaçam pelo menos 50% (cinquenta por cento) da carga horária semanal prevista para o período letivo.
Carga Horária Total	220		

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

7.9 Conteúdo prévio necessário para cursar Unidades Curriculares

Este documento apresenta uma simplificação da cadeia de pré-requisitos do curso de Engenharia Química. Na matriz 2017-2022, o NDE do curso fez um amplo levantamento dos requisitos e pré-requisitos necessários para cursar determinada UC. A simplificação dos pré-requisitos busca atender a necessidade de modernização do curso de Engenharia Química da Unifesp proposta pelas Novas Diretrizes Curriculares Nacionais (DCNs). Por isso, foi realizada uma análise conjunta na matriz do curso (2017 - 2022), pelo NDE e a CCEQ, de modo a estabelecer os pré-requisitos considerados fundamentais apenas em disciplinas chaves do curso Isto objetiva dar mais protagonismo aos alunos, proporcionando certa autonomia na escolha das unidades curriculares, porém assumindo responsabilidade por ela. A partir desta nova matriz, algumas unidades curriculares mantém seus pré-requisitos, no entanto, para a maioria, serão apresentados somente requisitos recomendados e o conteúdo prévio necessário que o aluno precisará para cursar a UC (Tabela 7). Se ele sentir que tem condições, poderá inscrever-se na UC, consciente de que precisa ter conhecimento daqueles conteúdos e mesmo que não tenha, terá que ter iniciativa de estudá-los para o acompanhamento adequado. A responsabilidade sobre o que se necessita previamente conhecer transfere-se ao discente. Além disso, a Tabela 7 será amplamente divulgada, de forma que o aluno, antes de se inscrever em determinada UC, terá ciência dos conteúdos necessários para compreensão e acompanhamento da UC. A matriz é organizada para o aluno cursá-la de forma sequencial, ou seja, um termo após o outro e, assim por diante. A simplificação dos pré-requisitos auxilia o não "engessamento" dos próximos semestres e permite que o discente curse outras UCs no tempo que tem disponível e, consequentemente, otimize o tempo da sua formação acadêmica. Cursar as UCs em ordem sequencial fornece ao aluno o conhecimento necessário para compreender conteúdos posteriores, porém espera-se que a simplificação dos pré-requisitos reduza a evasão e a retenção de alunos. Isto induz a autonomia e iniciativa dos alunos.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Tabela 7: Conhecimento prévio necessário para cursar as unidades curriculares do curso de Engenharia Química.

Unidade Curricular	ı	N	Pré-requisito recomendado/ Pré-requisito obrigatório	Conteúdo prévio necessário
Cálculo I	1	1	-	Matemática do Ensino Médio.
Fundamentos de Álgebra Linear e Geometria Analítica	1	1	-	Matemática do Ensino Médio.
Química Geral	1	1	-	Química do Ensino Médio.
Química Geral Experimental	1	1	-	Química do Ensino Médio.
Metodologia Científica	1	1	-	Não há
Algoritmos e Programação Computacional	1	2	-	Matemática do Ensino Médio.
Desenho Técnico	1	2	-	Não há.
Cálculo II	2	2	Recomendado: Fundamentos de Álgebra Linear e Geometria Analítica Obrigatório: Cálculo I	Limite; derivada; integral; produto vetorial e escalar.
Física I	2	2	-	Matemática e física do Ensino Médio; vetores e suas propriedades e operações; derivadas e integrais.
Química Orgânica	3	4	Obrigatório: Estrutura da Matéria	Não informado.
Estrutura da Matéria	2	2	-	Química do Ensino Médio.
Introdução à Engenharia Química	2	3	-	Noções básicas de química geral e álgebra.
Cálculo Numérico	2	3	Recomendado: Cálculo I Fundamentos de Álgebra Linear e Geometria Analítica Obrigatório: Algoritmos e Programação Computacional	Noções básicas de Cálculo: derivadas e integrais; Noções básicas sobre sistema de equações lineares; Noções básicas de programação: estruturas de decisão, estruturas de repetição, funções, vetores e matrizes.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Unidade Curricular	ı	N	Pré-requisito recomendado/ Pré-requisito	Conteúdo prévio necessário
			obrigatório	
Estatística	2	3	Recomendado: Cálculo I	Noções básicas de cálculo integral.
Cálculo III	3	3	Obrigatório: Cálculo II para Engenharia Química	Cálculo de várias variáveis: Limite; derivada parcial, integral; produto vetorial e escalar; coordenadas: polares, cilíndricas e esféricas.
Física III	3	3	Obrigatório: Cálculo I Física I	Cálculo: Integral, coordenadas polares, cilíndricas e esféricas; vetores, produto escalar, produto vetorial; Física: Conceitos básicos de mecânica.
Físico-Química	3	3	Obrigatório: Química Geral	Noções básicas de química e suas reações dadas nas UCs "Química Geral" e "Estrutura da Matéria".
Química Orgânica Experimental	4	5	Obrigatório: Química Orgânica	Ligação química; arranjo de átomos; Química da matéria e mudanças de estado. A linguagem química: símbolos, fórmulas e equações. Estequiometria e aritmética química. Soluções. Principais funções orgânicas. Compostos orgânicos. Propriedades físico-químicas e reatividade das principais funções orgânicas.
Química Analítica Geral I	2	5	Obrigatório: Química Geral	Conceitos de Química Geral, principalmente conceitos de equilíbrio químico.
Balanço de Massa e Energia	3	4	Recomendado: Introdução à Engenharia Química Química Geral Cálculo I	Química geral, estequiometria de reações, conversão de unidades, diferenciais e integrais, Interpolação simples e dupla, Gases ideais, propriedades termodinâmicas da água.
Fundamentos de Mecânica e Resistência dos Materiais	3	4	Recomendado: Física I	Funções e gráficos, Derivadas, Vetores no R2 e no R3, Retas e planos, Sistemas de equações lineares.
Cálculo IV	4	4	Obrigatório: Cálculo III	Cálculo de uma variável: Limite, derivada e integral; Equações diferenciais; Séries.
Física IV	4	4	Obrigatório: Cálculo III Física III	Cálculo: Derivada e Integral de uma e várias variáveis; coordenadas polares e esféricas, vetores, produto escalar e

Unidade Curricular	I	N	Pré-requisito recomendado/ Pré-requisito obrigatório	Conteúdo prévio necessário	
				vetorial ; Física: Conceitos de Eletromagnetismo.	
Termodinâmica I	4	5	Recomendado: Balanço de Massa e Energia Obrigatório: Cálculo II para Engenharia Química	Derivadas parciais. Integral.	
Fenômenos de Transporte I	4	5	Recomendado: Balanço de Massa e Energia Obrigatório: Cálculo II para Engenharia Química	Operações com vetores: produto escalar e vetorial, projeções de vetores. Gráfico de funções. Derivadas e Integrais de uma e várias variáveis. Máximos e mínimos de funções. Cinemática e dinâmica de corpos rígidos.	
Química Analítica Geral II	3	6	Obrigatório: Química Analítica Geral I	Conceitos de equilíbrio químico (qualitativa e quantitativa) abordados na química analítica geral 2. Noções básicas de laboratório.	
Ciência e Engenharia dos Materiais	5	6	Recomendado: Estrutura da Matéria	Conceitos básicos de equilíbrio líquido-vapor.	
Fenômenos de Transporte II	5	6	Recomendado: Cálculo IV Obrigatório: Fenômenos de Transporte I	EDP do calor e método da separação de variáveis. Balanço integral da conservação da energia, Equação de Navier-Stokes, Equação da Continuidade, Camada limite hidrodinâmica, Regime	
Operações Unitárias I	5	6	Obrigatório: Fenômenos de Transporte I	turbulento. Equações gerais da dinâmica dos fluidos. Fluidos newtonianos e não newtonianos. Escoamento laminar e turbulento. Conservação de massa e energia. Escoamento em dutos.	
Termodinâmica II	5	6	Recomendado: Termodinâmica I	Derivadas parciais. Integral. Balanços de massa, energia e entropia. Relação entre as propriedades termodinâmicas. Fugacidade.	
Análise Instrumental	4	7	Obrigatório: Química Analítica Geral II	Equilíbrio químico, métodos clássicos e noções básicas de laboratório (preparo de amostras, preparo de soluções, ensaios qualitativos e titulações.	

Unidade Curricular	I	N	Pré-requisito recomendado/ Pré-requisito obrigatório	Conteúdo prévio necessário
Administração	5	8	Recomendado: Estatística	Estatística descritiva e análise multivariada. Teste de hipótese. Regressão linear.
Eletrotécnica Aplicada à Engenharia Química	5	10	Recomendado: Física III	Interação elétrica. Lei de Coulomb. Campo elétrico. Lei de Gauss. Potencial elétrico. Energia eletrostática. Capacitores e dielétricos. Corrente e resistência. Lei de Ohm. Leis de Kirchoff. Campo magnético. Lei de Ampère. Lei de Faraday e lei de Lenz. Magnetismo em meios materiais.
Princípios de Automação e Instrumentação	5	10	Recomendado: Física III	Interação elétrica. Lei de Coulomb. Campo elétrico. Lei de Gauss. Potencial elétrico. Energia eletrostática. Capacitores e dielétricos. Corrente e resistência. Lei de Ohm. Leis de Kirchoff. Campo magnético. Lei de Ampère. Lei de Faraday e lei de Lenz. Magnetismo em meios materiais.
Fenômenos de Transporte	6	7	Recomendado: Cálculo IV e Fenômenos de Transporte II Obrigatório: Fenômenos de Transporte I	Cálculo vetorial. Sequências e séries numéricas. Séries de potências. Resolução de EDO's pelo método das séries de potências. Séries de Fourier. EDP do calor e EDP das ondas e o método de separação de variáveis. Funções especiais. Propriedades dos fluidos. Viscosidade. Balanços integrais de massa e quantidade de movimento. Balanço de energia. Campos de velocidade e aceleração. Balanços diferenciais de massa e quantidade de movimento. Escoamentos em regime laminar e turbulento. Camada limite hidrodinâmica. Escoamento em condutos fechados. Conceitos fundamentais de transferência de calor. Equações da taxa de calor para condução, convecção e radiação. Camada limite térmica. Analogias entre transferência de calor e de quantidade de movimento.

Unidade Curricular	ı	N	Pré-requisito recomendado/ Pré-requisito obrigatório	Conteúdo prévio necessário
Operações Unitárias II	6	7	Obrigatório: Fenômenos de Transporte II	Conceitos fundamentais de transferência de calor. Equações da taxa de calor para condução e convecção. Equação da Condução do Calor. Convecção natural e forçada. Transferência de calor com mudança de fase.
Laboratório de Engenharia Química I	6	7	Obrigatório: Fenômenos de Transporte II	Elaboração de relatório técnico e científico de acordo com as normas da ABNT Experimento de Reynolds. Equação da conservação da massa. Equação de Bernoulli. Equação da energia com perdas localizadas e distribuídas. Medidores de vazão do tipo venturi, placa de orifício e tubo de Pitot. Medidores de pressão. Viscosidade dinâmica: conceito e formas de medição.
Reatores Químicos I	6	7	Obrigatório: Balanço de Massa e Energia	Derivada e integração de funções. Equações diferenciais ordinárias. Equações diferenciais de primeira ordem. Sistemas de equações diferenciais ordinárias. Integração numérica. Diferenciação numérica. Estequiometria de reações químicas. Equilíbrio químico e Lei de ação das massas. 1a Lei da Termodinâmica. Lei da conservação da massa e energia. Balanço de massa com reação química em processos químicos. Balanço de energia sem mudança de fase em processos químicos. Balanços de massa e energia combinados. Escoamento em colunas de recheio. Conceitos fundamentais de transferência de calor. Trocadores de calor.
Modelagem e Análise de Sistemas	6	9	Recomendado: Cálculo III Fenômenos de Transporte II Obrigatório: Cálculo Numérico	Matrizes e vetores. Sistemas de equações algébricas lineares. Funções de múltiplas variáveis e suas derivadas. Sistemas de equações diferenciais ordinárias. Algoritmos e programação computacional. Resolução numérica de sistemas de

Unidade Curricular	I	N	Pré-requisito recomendado/ Pré-requisito obrigatório	Conteúdo prévio necessário	
				equações algébricas lineares. Método dos mínimos quadrados. Zeros de funções. Utilização do software livre Scilab ou do software comercial Matlab. Noções básicas de equipamentos de Engenharia Química. Agitação e mistura. Conceitos e cálculos básicos da Engenharia Química: estequiometria e cinética das reações químicas, equilíbrio químico. Balanços integrais de massa e de energia combinados com e sem reação química em processos químicos. Balanços diferenciais de massa e quantidade de movimento. Equilíbrio líquido-vapor. Difusão térmica e noções de difusão mássica. Escoamentos em regime laminar e turbulento. Transferência de calor por condução e convecção. Primeira e segunda leis da termodinâmica. Propriedades termodinâmicas dos fluidos. Termodinâmica de misturas. Equilíbrio de fases multicomponente.	
Economia	6	9	Recomendado: Cálculo I	Funções econômicas utilizando cálculo diferencial e integral.	
Operações Unitárias III	7	8	Recomendado: Termodinâmica II Obrigatório: Fenômenos de Transporte III	Balanço material e de energia; Propriedades termodinâmicas dos fluidos; Propriedades termodinâmicas das soluções; Equilíbrio de fase; Transferência de massa entre fases	
Laboratório de Engenharia Química II	7	8	Recomendado: Operações Unitárias I Recomendado ter cursado ou estar cursando: Operações Unitárias III Obrigatório: Operações Unitárias II	Elaboração de relatório técnico e científico de acordo com as normas da ABNT. Equipamentos para transporte de fluidos. Colunas de recheio. Fluidização. Transporte hidráulico e pneumático. Filtração. Sedimentação. Centrifugação. Agitação e mistura.Trocadores de Calor, Evaporadores, Psicrometria, Secagem, Umidificação.	

Unidade Curricular	ı	N	Pré-requisito recomendado/ Pré-requisito	Conteúdo prévio necessário	
			obrigatório	Balanços de massa e energia, termodinâmica (equilíbrio de fases e equilíbrio químico, modelos termodinâmicos) fenômenos de	
Simulação de Processos	7	10	Obrigatório: Modelagem e Análise de Sistemas	transporte, termodinâmica, cinética química e físico-química; domínio dos principais conceitos das operações unitárias e reatores; domínio dos métodos numéricos; conhecer os aspectos construtivos dos principais equipamentos da indústria química; analisar e interpretar fisicamente os resultados obtidos via simulação sob a luz dos conhecimentos adquiridos ao longo do curso.	
Fundamentos de Bioquímica e Biologia Celular	7	8	-	Biologia do Ensino Médio.	
Reatores Químicos II	7	8	Recomendado: Reatores Químicos I Fenômenos de Transporte III	Integral, balanço de massa em reatores químicos, estequiometria de reação, velocidade de reação e etapa limitante, difusão externa (Lei de Fick, coeficiente de transferência de massa), difusão interna (módulo de Thiele, fator de efetividade interno). Integração numérica e diferenças finitas.	
Eletroquímica Aplicada	7	10	Recomendado: Reatores Químicos I	Reações de oxi-redução, estequiometria e cinética das reações químicas, eletrodos, Equação de Nernst, cálculo I, tipo e cinética de reatores, conhecimentos básicos de transferência de massa, números adimensionais.	
Síntese e Otimização de Processos	8	11	Obrigatório: Simulação de processos	Balanços de massa e energia, termodinâmica (equilíbrio de fases e equilíbrio químico) e fenômenos de transporte; domínio dos principais conceitos das operações unitárias e reatores; domínio de técnicas numéricas e simulação; raciocínio lógico e capacidade de abstração; capacidade de expressar problemas reais em linguagem matemática; capacidade analítica e de interpretação física dos resultados	

Unidade Curricular	ı	N	Pré-requisito recomendado/ Pré-requisito obrigatório	Conteúdo prévio necessário
				obtidos sob a luz dos conhecimentos adquiridos ao longo do curso.
Análise e Controle de Processos	8	11	Recomendado: Cálculo IV Princípios de Automação e Instrumentação Modelagem e Análise de Sistemas Reatores Químicos I	Modelagem de cinética de reações química em fase homogênea; Modelagem de balanços de massa e energia em regime transiente. Análise de parâmetros concentrados. Resolução de EDOs por Transformada de Laplace. Princípio de funcionamento de sensores e atuadores. Domínio do Software Scilab.
Engenharia Bioquímica	8	9	Recomendado: Reatores Químicos I Obrigatório:	Modelos das cinéticas das reações químicas. Balanços de massa e análises dimensionais
		Ü	Fundamentos de Bioquímica e Biologia Celular	Associação de reatores. Estrutura e funcionamento da célula. Principais classes de compostos bioquímicos.
				Cinética química em reator batelada. Distribuição de tempo de residência.
Laboratório de Engenharia Química III	8	11	Recomendado ter cursado ou estar cursando: Análise e Controle de Processos Engenharia Bioquímica	Métodos de contagem microbiana, especialmente em Câmara de Neubauer. Crescimento microbiano e fases de crescimento. Cálculo da velocidade específica de crescimento, determinação da fase lag e exponencial. Noções de fermentação, consumo de substrato e formação de produto. Cálculo de rendimento e produtividade em uma fermentação em batelada.
			Obrigatório: Reatores Químicos II	Modelagem dinâmica de tanques de nível e tanque de aquecimento. Dinâmica de processos químicos de primeira e segunda ordem. Princípio de funcionamento de sensores e atuadores. Sistemas de controle feedback. Componentes e funcionamento de malha de controle. Controlador PID. Ações de controle. Funcionamento. Sintonia de controladores PID. Métodos de

Pré-requisito Unidade Curricular I N recomendado/ Pré-requisito obrigatório		Conteúdo prévio necessário		
				sintonia PID. Curva de reação do processo, oscilação contínua e auto sintonia. Elaboração de relatório técnico e científico de acordo com as normas da ABNT.
Processos Químicos Industriais	8	9	Recomendado: Balanço de Massa e Energia	Conhecimentos sobre as principais técnicas de separação (operações unitárias. Balanço de massa e energia. Noção sobre os princípios de engenharia química adquiridos durante o curso.
Projeto de Processos Químicos	9	11	Recomendado: Operações Unitárias III Obrigatório: Operações Unitárias I Operações Unitárias II	Uso de simuladores de processos industriais. Conceitos de destilação: volatilidade relativa, pressão de vapor, refluxo ótimo. Conceitos de reações químicas: expressão de Arrhenius, energia de ativação. Conceitos de economia: taxa de juros, valor presente.
Processos para Tratamento de Efluentes	9	10	Recomendado: Engenharia Bioquímica Reatores Químicos I	Balanço de massa e energia, conhecimento de reatores batelada e processo contínuo, cinética de reações de primeira ordem, inclusive cinética microbiana. Fluxograma de processos.
Segurança Industrial	9	12	Recomendado: Processos Químicos Industriais	Conhecimento de processos químicos. Conhecimento do princípio de funcionamento de equipamentos da indústria química. Fluxograma de processos. Variáveis de processo.
Trabalho de Conclusão de Curso I (TCC-I)	9	11	Obrigatório: Laboratório de Engenharia Química II	Elaboração de relatório técnico e científico de acordo com as normas da ABNT.
Projeto de Instalações Químicas	10	12	Recomendado: Desenho Técnico Obrigatório: Projeto de Processos Químicos	Conceitos de instrumentação de processos químicos.

Unidade Curricular	I	N	Pré-requisito recomendado/ Pré-requisito obrigatório	Conteúdo prévio necessário
Trabalho de Conclusão de Curso II (TCC-II)	10	12	Obrigatório: Trabalho de Conclusão de Curso I (TCC-I)	Elaboração de relatório técnico e científico de acordo com as normas da ABNT.
Estágio Supervisionado	-	-	Obrigatório: Balanço de Massa e Energia Análise Instrumental Operações Unitárias	Não há.
Atividades Complementares	-	-	-	Não há.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

7.10 Equivalências

A Tabela 8 apresenta a lista de unidades curriculares equivalentes entre a matriz de 2017 e a matriz de 2023.

Tabela 8: Equivalências entre unidades curriculares da matriz de 2017 e a matriz de 2023.

UC na Matriz Curricular 2017 - 2022	Termo	СН	UC na Matriz Curricular 2023	Termo	СН
Laboratório de Engenharia Química I	6 (I) 7 (N)	54	Laboratório de Engenharia Química I	6 (I) 7 (N)	72
Laboratório de Engenharia Química II	7 (I) 8 (N)	54	Laboratório de Engenharia Química II	7 (I) 8 (N)	72
TCC I – Engenharia Química	9 (I) 11 (N)	72	TCC I – Engenharia Química	9 (I) 11 (N)	102
TCC II – Engenharia Química	10 (I) 12 (N)	72	TCC II – Engenharia Química	10 (I) 12 (N)	108
Estágio Supervisionado em Engenharia Química	9 (I) 10 (N)	240	Estágio Supervisionado em Engenharia Química	UC não vinculada a termo específico	160

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

7.11 Unidades Curriculares Eletivas

O aluno deverá cumprir 144 horas em Unidades Curriculares eletivas, as quais estão distribuídas em quatro linhas principais de atuação dos docentes, sendo que as linhas (1), (2) e (3) estão de acordo com o Programa de Mestrado em Engenharia Química do *Campus* Diadema da Unifesp:

- (1) Engenharia e Desenvolvimento de Processos Químicos;
- (2) Tecnologia Química, Bioquímica e de Materiais;
- (3) Desenvolvimento de Processos para o Meio Ambiente e Geração de Energia;
- (4) Gestão e Gerenciamento de Processos;
- (5) Formação Geral.

Além disso, buscando promover a formação multidisciplinar do egresso, qualquer Unidade Curricular oferecida por outro curso da Unifesp/*Campus* Diadema é considerada como carga horária eletiva no âmbito do Curso de Engenharia Química.

Qualquer docente pode apresentar novas unidades curriculares em qualquer tempo na Unifesp, desde que submetidas e aprovadas pela Comissão de Curso.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

7.12 Ementa e Bibliografia

A seguir estão apresentadas as ementas das Unidades Curriculares em conjunto com suas referências bibliográficas.

Os planos de ensino das Unidades Curriculares oferecidas são atualizados semestralmente. O NDE avalia estes planos de forma que estejam compatíveis com o Projeto Pedagógico do Curso, Regimento Interno da Pró-Reitoria de Graduação, além de outras portarias que podem ser estabelecidas para as atividades acadêmicas daquele semestre. Estes planos são divulgados amplamente pela Coordenação de Curso no Moodle do curso de Engenharia Química e pela Secretaria Acadêmica antes do processo de rematrícula semestral, por meio de seu site:

sagdiadema - Planos de Ensino das UCs

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular CÁLCULO I

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 1

Carga Horária Total 72 h Noturno 1

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Funções e gráficos. Limites e continuidade. Derivadas. Aplicações da derivada. Integração indefinida. Integração definida. Técnicas de Integração. Integrais impróprias. Aplicações das integrais.

BIBLIOGRAFIA

Básica

- 1. STEWART, J. **Cálculo**. Volume I. 6ª Ed. São Paulo: Thomson Learning, 2010, ISBN: 8522112584. (Disponível no e-Books)
- 2. FINNEY, R., WEIR, MAURICE D., GIORDANO, FRANK, R. **Cálculo** de George B. Thomas Jr. Vol. 1. 11^a ed. São Paulo: Addison Wesley, 2009, ISBN: 8581430864. (Disponível no e-Books)
- 3. Simmons, George F. Cálculo com geometria analítica. São Paulo: Pearson Makron Books, 2008, ISBN: 0074504118.

- 1. FLEMMING, D.M.; GONÇALVES, M.B. **Cálculo A**: funções, limite, derivação, integração. 6ª Ed. São Paulo: Pearson Prentice Hall, 2007, ISBN:857605115X. (Disponível no e-Books)
- 2. GUIDORIZZI, H.L. **Um curso de cálculo**. 5.ed. Rio de Janeiro: LTC, 2001, ISBN: 8521612591. (Disponível no e-Books)
- 3. LEITHOLD, L. Cálculo com geometria analítica. Vol. 1. São Paulo: Ed. Harbra, 1994, ISBN: 8529400941.
- 4. MORETTIN, P.A.; HAZZAN, S.; BUSSAB, W. O. **Cálculo**: funções de uma e várias variáveis. 2ª ed. São Paulo: Saraiva, 2011, ISBN: 8502102443. (Disponível no e-Books)
- 5. LARSON, R. **Cálculo Aplicado**: Curso Rápido. Cengage Learning, 2011, ISBN: 8522107343. (Disponível no e-Books)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FUNDAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 1
Carga Horária Total 72 h Noturno 1

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Vetores no R2 e no R3. Produto escalar, vetorial e misto. Retas e planos. Sistemas de equações lineares. Dependência linear. Espaços vetoriais. Transformações lineares. Autovalores e autovetores.

BIBLIOGRAFIA

Básica

- 1. STEINBRUCH, A.; WINTERLE, P. **Geometria Analítica**. 2a ed, Pearson, 1995. ISBN-10: 0074504096; ISBN-13: 978-0074504093. **(Ebook)**
- 2. LAY, D.C. Álgebra Linear e suas Aplicações, 4a ed., LTC, 2013. ISBN-10: 8521622090; ISBN-13: 978-8521622093. (Ebook)
- 3. ANTON, H.A.; RORRES, C. **Álgebra Linear com Aplicações**. 10a ed, Bookman, 2012. ISBN-10: 8540701693; ISBN-13: 9788540701694. **(Ebook)**

- 1. LIMA, E.L. **Geometria Analítica e Álgebra Linear**. IMPA Coleção Universitária. 2005. ISBN-10: 8524401850; ISBN-13: 978-8524401855.
- 2. CAROLI, A.; CALLIOLI, C.; FEITOSA, M.O. Matrizes, Vetores e Geometria Analítica. 17a. Ed. São Paulo: Editora Nobel, 1984. ISBN-10: 8521304064; ISBN-13: 978-8521304067.
- 3. BOULOS, P.; CAMARGO, I. **Geometria Analítica: um tratamento vetorial**. 3a Ed. São Paulo: Person/Pretice Hall, 2005. ISBN-10: 8587918915. **(Ebook)**
- 4. SANTOS, F.J.; FERREIRA, S.F. **Geometria Analítica**. 1a. Ed. Porto Alegre: Bookman, 2009. ISBN- 10: 8577804828; ISBN-13: 9788577804825.
- 5. STRANG, G. Álgebra Linear e Suas Aplicações. Tradução da 4a ed. norte-americana, Cengage, 2010. ISBN-10: 8522107440; ISBN-13: 9788522107445.
- 6. SANTOS, R. J. **Um curso de Geometria Analítica e Álgebra Linear**. Imprensa Universitária da UFMG, 2017. Disponível em: https://www.dropbox.com/s/jj3xq0hjv2z39zp/gaalt0.pdf?m

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular METODOLOGIA CIENTÍFICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 1

Carga Horária Total 36 h Noturno 1

Teórico 36 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há Obrigatório (s) Pré-requisito (s) Não há Recomendado (s)

EMENTA

Educação das Relações Étnico-Raciais e para o Ensino da História e Cultura Afro-Brasileira, Africana e Indígena. Ciência e Método Científico. Projetos de pesquisa e/ou inovação tecnológica. Técnicas de Estudo: leitura, resumos e resenhas. Técnicas de redação científica: estruturação de textos. A importância da correção e precisão de linguagem para textos científicos. Desenvolvimento de textos técnicos: finalidades, tipos, etapas, projeto e relatório. Elaboração de monografias e textos científicos. Produção científica e apresentação estética de trabalhos acadêmicos: artigos nacionais e internacionais, monografias, resenhas, relatórios e ensaios. Formatação de relatórios e normas de referenciação bibliográfica (ABNT). Orientação para apresentação pública de trabalhos de pesquisa. Plágio e ética na pesquisa científica.

BIBLIOGRAFIA

Básica

- 1. ANDRADE, Maria Margarida de. **Introdução à metodologia do trabalho científico: elaboração de trabalhos na graduação.** 10ª. São Paulo Atlas 2012 1 recurso online ISBN 9788522478392. (disponível no e-Books)
- 2. GIL, A.C. **Como elaborar projetos de pesquisa.** 4ª edição, São Paulo, SP. Ed. Atlas, 2002. ISBN 85-224-3169-8. (disponível no e-Books)
- 3. MATTAR, João. **Metodologia científica na era da informática.** 3.ed. São Paulo: Saraiva, 2008. 308 p. ISBN 9788502064478. (disponível no e-Books)
- 4. OLIVEIRA NETTO, A.A. **Metodologia da pesquisa científica: guia prático para apresentação de trabalhos acadêmicos.** 2ª ed. Florianópolis: Visual Books, 2008.
- 5. SOUZA, L. C. **Estrutura lógica de organização da pesquisa científica.** Belo Horizonte: Editora UEMG, 2020. ISBN 9788554780265. (disponível no e-Books)

- 1. SEVERINO, A.J. Metodologia do trabalho científico. São Paulo: Cortez, 2007. ISBN 978-85-249-1311-2
- 2. ABNT. Informação e documentação: citações em documentos: apresentação NBR 10520. Rio de Janeiro, 2002. 7f.
- 3. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6028: Informação e documentação: resumo: apresentação.** Rio de Janeiro, 2003. 2f.
- 4. MARCONI, M.A.; LAKATOS, E.M. **Metodologia do trabalho científico.** 6ª ed. São Paulo: Atlas, 2001. ISBN 85-224-3397-6.
- 5. SALVADOR, A.D. **Métodos e técnicas de pesquisa bibliográfica: elaboração de trabalhos científicos.** Ed. Sulina, 1993. ISBN 85-336-0504-8.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular QUÍMICA GERAL

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 1

Carga Horária Total 72 h Noturno 1

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Química da matéria e mudanças de estado. A linguagem química: símbolos, fórmulas e equações. Estequiometria e aritmética química. Soluções. Princípios da termodinâmica. Equilíbrio e Lei de ação das massas. Eletroquímica.

BIBLIOGRAFIA

Básica

- 1. BROWN, T.L.; LEMAY, H.E.; BURSTEN, B.E.; BURDGE, J.R. **Química: a Ciência Central** (traduzido por Robson Mendes Matos) 9a edição, São Paulo: Pearson Prentice Hall, 2005. ISBN 9788587918420.
- 2. ATKINS, P.; JONES, L. **Princípios de química: questionando a vida moderna e o meio ambiente** (tradução: Ricardo Bicca de Alencastro), 3a ed. Porto Alegre: Bookman, 2006. ISBN: 9788540700383.
- 3. KOTZ, J.C.; TREICHEL JR., P.M. **Química geral e reações químicas** (tradução técnica da 5a. ed. Norte-americana por Flávio Maron Vichi) v. 1 e v.2. **São Paulo: Pioneira Thomson Learning**, 2005. ISBN-10: 8522106916. ISBN-13: 9788522106912.

- 1. ROCHA-FILHO, R.C.; SILVA, R.R. **Cálculos básicos da química**. São Carlos: EdUFSCAR, 2006. ISBN-13: 9788576002277. ISBN-10: 8576002272.
- 2. MASTERTON, W.L.; SLOWINSKI, E.J.; STANITSKI, C.L. **Princípios de química**. (tradução: Jossyl de Souza Peixoto), 6a. ed. Rio de Janeiro: Guanabara, 1990. ISBN: 8521611218. ISBN-13: 9788521611219.
- 3. MAHAN, B.M.; MYERS, R.J. **Química: um curso universitário** (tradução da 4. ed. americana, coordenador Henrique Eisi Toma; tradutores Koiti Araki, Denise de Oliveira Silva, Flávio Massao Matsumoto). São Paulo: Edgard Blücher, 2003.
- 4. RUSSELL, J.B. **Química geral** (coordenação Maria Elizabeth Brotto; tradução e revisão Márcia Guekezian et al.), 2a. ed. São Paulo: Makron Books, 2004. ISBN: v.1 8534601925 : v.2 8534601518.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular QUÍMICA GERAL EXPERIMENTAL

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 1
Carga Horária Total 72 h Noturno 1

Teórico 0 h **Prático** 72 h **Extensão** 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Química da matéria e mudanças de estado. A linguagem química: símbolos, fórmulas e equações. Estequiometria e aritmética química. Soluções. Princípios da termodinâmica. Equilíbrio e Lei de ação das massas. Eletroquímica.

BIBLIOGRAFIA

Básica

- 1. BROWN, T.L.; LEMAY, H.E.; BURSTEN, B.E.; BURDGE, J.R. **Química: a Ciência Central** (traduzido por Robson Mendes Matos) 9a edição, São Paulo: Pearson Prentice Hall, 2005. ISBN 9788587918420.
- 2. ATKINS, P.; JONES, L. **Princípios de química: questionando a vida moderna e o meio ambiente** (tradução: Ricardo Bicca de Alencastro), 3ª ed. Porto Alegre: Bookman, 2006. ISBN: 9788540700383.
- 3. KOTZ, J.C.; TREICHEL JR., P.M. **Química geral e reações químicas** (tradução técnica da 5ª. ed. Norte-americana por Flávio Maron Vichi). São Paulo: Pioneira Thomson Learning, 2005. ISBN-10: 8522106916. ISBN-13: 9788522106912.

- 1. ROCHA-FILHO, R.C.; SILVA, R.R. **Cálculos básicos da química.** São Carlos: EdUFSCAR, 2006. ISBN-13: 9788576002277. ISBN-10: 8576002272.
- 2. MASTERTON, W.L.; SLOWINSKI, E.J.; STANITSKI, C.L. **Princípios de química.** (tradução: Jossyl de Souza Peixoto), 6ª. ed. Rio de Janeiro: Guanabara, 1990. ISBN: 8521611218. ISBN-13: 9788521611219.
- 3. MAHAN, B.M.; MYERS, R.J. **Química: um curso universitário** (tradução da 4. ed. americana, coordenador Henrique Eisi Toma; tradutores Koiti Araki, Denise de Oliveira Silva, Flávio Massao Matsumoto). São Paulo: Edgard Blücher, 2003.
- 4. RUSSELL, J.B. **Química geral** (coordenação Maria Elizabeth Brotto; tradução e revisão Márcia Guekezian et al.), 2ª. ed. São Paulo: Makron Books, 2004. ISBN: v.1 8534601925: v.2 8534601518.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ALGORITMOS E PROGRAMAÇÃO COMPUTACIONAL

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 1
Carga Horária Total 72 h Noturno 2

Teórico 54 h **Prático** 18h **Extensão** 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Fundamentos de algoritmos computacionais. Programação em linguagem estruturada. Estrutura sequencial. Estrutura condicional. Estrutura de repetição. Criação de funções computacionais. Variáveis indexadas. Algoritmos de ordenação. Cadeias de caracteres (strings).

BIBLIOGRAFIA

Básica

- 1. DEITEL, P; DEITEL, H. **C: Como Programar.** Editora Pearson, 6ª Edição, 2011. ISBN-13: 9788576059349 (disponível em e-book)
- 2. DAMAS, L. **Linguagem C.** Editora LTC, 10^a Edição, 2007. ISBN-13: 978-8521615194 (disponível em e-book)
- 3. FARRER, H.; BECKER, C. G.; FARIA, E. C.; MATOS, H. F.; SANTOS, M. A.; MAIA, M. L. **Algoritmos Estruturados.** Editora LTC, 3ª Edição, 2011. ISBN: 9788521611806

- 1. DE SOUZA, M. A. F.; GOMES, M. M.; SOARES, M. V.; CONCÍLIO, R. **Algoritmos e Lógica de Programação.** Editora CENGAGE, 2ª Edição, 2012. ISBN: 9788522111299 (disponível em e-book)
- 2. MIZRAHÍ, V. V. **Treinamento em Linguagem C.** Editora Pearson, 2ª Edição, 2008. ISBN: 9788576051916 (disponível em e-book)
- 3. LOPES, A.; GARCIA G. Introdução à programação: 500 algoritmos resolvidos. Editora Campus, 2001. ISBN-10: 8535210199
- 4. SOUZA, J. A. Lógica para a Ciência da Computação. Editora Campus, 2008. ISBN-10: 8535229612
- 5. SOFFNER, R. **Algoritmos e programação em linguagem C.** Editora Saraiva, 2013. ISBN: 9788502207530 (disponível em e-book)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular CÁLCULO II PARA ENGENHARIA QUÍMICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 2

Carga Horária Total 72 h Noturno 2

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Cálculo I

Obrigatório (s)

Pré-requisito (s)Fundamentos de Álgebra Linear e Geometria Analítica

recomendado (s)

EMENTA

Funções de múltiplas variáveis e suas derivadas. Integrais múltiplas. Equações diferenciais ordinárias. Equações diferenciais de primeira ordem. Equações diferenciais de segunda ordem com coeficientes constantes. Sistemas de equações diferenciais ordinárias.

BIBLIOGRAFIA

Básica

- 1. STEWART, J. **Cálculo, volume 2, 6ª Ed.** São Paulo: Cengage Learning, 2017, ISBN: 8522125848 ISBN-13: 9788522125845 (disponível no e-Books).
- 2. FINNEY, R.; WEIR, M. D.; GIORDANO, F. R. **Cálculo: George B. Thomas, volume 2, 12ª Ed.** São Paulo: Editora Pearson, 2012, ISBN: 8581430872, ISBN-13 9788581430874 (disponível no e-Books).
- 3. ZILL, D. G.; **Equações diferenciais: Com aplicações em modelagem**, 10^a Ed. Cengage Learning. 2016, ISBN: 8522123896, ISBN-13: 9788522123896 (disponível no e-Books).

- 1. GUIDORIZZI, H. L. **Um curso de cálculo, volume 2**, 6ª Ed., Rio de Janeiro: LTC, 2018, ISBN: 8521635443, ISBN-13: 9788521635444 (disponível no e-Books).
- 2. GUIDORIZZI, H. L. **Um curso de cálculo, volume 3**, 6ª Ed., Rio de Janeiro: LTC, 2018, ISBN: 8521635451, ISBN-13: 9788521635451 (disponível no e-Books).
- 3. BOYCE, W. **Equações Diferenciais Elementares e Problemas de Valores de Contorno**, 11ª Ed., Rio de Janeiro: LTC, 2020, ISBN: 8521636946, ISBN-13: 9788521636946 (disponível no e-Books).

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Unidade Curricular DESENHO TÉCNICO

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 1
Carga Horária Total 54 h Noturno 2

Teórico 39 h **Prático** 15 h **Extensão** 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Normas de desenho técnico. Projeções Ortogonais. Perspectiva Isométrica. Cotas e cortes. Fluxogramas industriais. Representação de tubulações industriais.

BIBLIOGRAFIA

Básica

- 1. SILVA, A.; RIBEIRO, C.T.; DIAS, J.; SOUZA, L. **Desenho Técnico Moderno**. 4ª edição, Editora LTC, 2007, ISBN: 85-2161522-1. (disponível nos e-Books)
- 2. FRENCH, T.E.; VIERCK, C.J. **Desenho Técnico e Tecnologia Gráfica**. 1ª edição. Editora Globo, 2008, ISBN: 8525007331.
- 3. GARY, R.B.; ERIC, N.W.; NATHAN, W.H.; WILLIAN, A.R. **Technical Graphics Communication**. 4a edição. Editora McGrawHill, 2009, ISBN: 9780073128375.

- 1. Norma Técnica Brasileira: Documentação técnica de produto Vocabulário -Parte 2: Termos relativos aos métodos de projeção (NBRISO10209-2).
- 2. ABRANTES, J. "Desenho técnico básico : teoria e prática." Rio de Janeiro LTC 2018. ISBN 9788521635741. (disponível nos e-Books)
- 3. CRUZ, M.D. "Desenho técnico". São Paulo Erica 2014, ISBN 9788536518343. (disponível nos e-Books)
- 4. BUENO, C.P.; PAPAZOGLOU, R.S. **Desenho Técnico Para Engenharias**. 1ª edição, 2008, Editora Jurua, ISBN 8536216794.
- 5. GIESECKE, F.E. et al. "Comunicação gráfica moderna". Porto Alegre Bookman 2011, ISBN 9788577803750. (disponível nos e-Books)
- 6. BALDAM, R.; COSTA, L. **AutoCAD 2008 Utilizando Totalmente**. 1a Edição, Editora Érica, 2008, ISBN: 978-85-3650-1833.
- 7. OBERG, E.; JONES, F.D.; HORTON, H.L. Manual Universal do Engenheiro: Obra de Consulta para Técnicos Mecânicos, Projetistas, Ferramenteiros e Engenheiros Mecânicos, Vol. 4. (Machinery's Handbook). Tradução de: Norberto de Paula Lima. São Paulo, Editora Hemus, 1979.
- 8. PROVENZA, F. **Desenhista de Máquinas**. 4ª edição, Editora Francesco Provenza, 1997, ISBN: 0000004526.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ESTRUTURA DA MATÉRIA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 2

Carga Horária Total 72 h Noturno 2

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há
Obrigatório (s)
Pré-requisito (s) Não há

Pre-requisito (s) Nao na

Recomendado (s)

EMENTA

Ementa: Partículas subatômicas, evolução dos modelos atômicos, quantização da energia, dualidade partícula-onda do elétron, orbitais atômicos e moleculares, organização da tabela periódica e propriedades periódicas dos elementos, ligações e interações químicas, ácidos e bases de Lewis.

BIBLIOGRAFIA

Básica

- 1. P. Atkins e L. Jones; **Princípios de Química: questionando a vida moderna e o meio ambiente**, 7ª. Ed. Porto Alegre: Bookman, 2016. ISBN: 9781464183959 (disponível no e-Books)
- 2. T.L. Brown, H.E. LeMay, Jr.; B.E. Bursten, J.R. Burdge, **Química, a Ciência Central**, 9^a. Ed. São Paulo: Pearson, 2005. ISBN: 8587918427
- 3. Bruce M. Mahan e Rollie J. Myers, **Química: Um curso Universitário**. 4ª. Ed. São Paulo: Edgard Blucher, 2018. ISBN13: 9788521200369. (disponível no e-Books)

- 1. John C. Kotz e Paul M. Treichel Jr., **Química Geral e reações químicas** vol.1. 5ª. Ed. São Paulo: Pioneira Thomson Learning, 2005. ISBN: 852210462-x, ISBN13: 9788522104628. (disponível no e-Books)
- 2. John C. Kotz e Paul M. Treichel Jr., **Química Geral e reações químicas** vol.2. 5ª. Ed. São Paulo: Pioneira Thomson Learning, 2005. ISBN: 852210462-x, ISBN13: 9788522104628.
- 3. John B. Russel, Química Geral. 2ª. Ed. Vol. 1. São Paulo: Makron Books, 2004. ISBN-10: 8534601518
- 4. John B. Russel, Química Geral. 2ª. Ed. Vol. 2. São Paulo: Makron Books, 2004. ISBN-10: 8534601518
- 5. C. Raymond; **Química**, 11ª Ed. Porto Alegre: Bookman, 2013. ISBN: 978-85-8055-256-0 (disponível no e-Books)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FÍSICA I

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 2

Carga Horária Total 72 h Noturno 2

Teórico 54 h **Prático** 18 h **Extensão** 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

- 1. Grandezas Físicas. 2. Movimento em uma dimensão. 3. Movimento em duas dimensões e três dimensões.
- 4. Leis de Newton e aplicações. 5. Trabalho e Energia Cinética. Energia Potencial e Conservação da Energia.
- 6. Momento Linear, Impulso e Colisões. 7. Rotação de Corpos Rígidos. Dinâmica do Movimento de Rotação.

BIBLIOGRAFIA

Básica

- 1. TIPLER, P.A.; MOSCA, G. Física para Cientistas e Engenheiros Vol.1.
- 2. SERWAY, R.A.; JEWETT JR., J.W. **Princípios de Física**, Vol. 1 Mecânica Clássica; 8a Edição; Ed. Cengage Learning, 2011 (**e-Book**).
- 3. YOUNG, H.D.; FREEDMAN, R.A.; SEARS, F.; ZEMANSKY, M.W. **Mecânica**. Vol. 1: 12a. Edição, São Paulo: Addison Wesley, 2008 (**e-Book**).

- 1. CHAVES, A.; SAMPAIO, J.F. Física Básica: Mecânica. 1a. ed. Rio de Janeiro: LTC, 2007.
- 2. NUSSENZVEIG, H. M. **Curso de Física Básica vol 1: Mecânica**. 5a edição. São Paulo: Edgard Blücher, 2013 (**e-Book**]).
- 3. HALLIDAY, D.; RESNICK, R.; WALKER, J. **Fundamentos de Física vol 1: Mecânica**. 9a. Edição. Editora LTC, 2012.
- 4. Grupo De Reelaboração do Ensino de Física-GREF; Física 1: Mecânica, editoria EDUSP, 7a edição, 2011.
- 5. VUOLO, J.H. Fundamentos da Teoria de Erros; 2a Edição; Editora Edgard Blücher, 1996.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular CÁLCULO III

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 3

Carga Horária Total 72 h Noturno 3

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Cálculo II para Engenharia Química

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Cálculo vetorial. Integrais de linha e superfície. Teoremas integrais: Green, Gauss e Stokes. Sequências e séries numéricas. Séries de potências. Resolução de EDO's pelo método das séries de potências.

BIBLIOGRAFIA

Básica

- 1. STEWART, J. **Cálculo, volume 2, 6ª Ed.** São Paulo: Cengage Learning, 2017, ISBN: 8522125848 ISBN-13: 9788522125845 (disponível no e-Books).
- 2. FINNEY, R.; WEIR, M. D.; GIORDANO, F. R. **Cálculo: George B. Thomas, volume 2, 12ª Ed.** São Paulo: Editora Pearson, 2012, ISBN: 8581430872, ISBN-13 9788581430874 (disponível no e-Books).
- 3. GUIDORIZZI, H. L. Um curso de cálculo, volume 3, 6ª Ed., Rio de Janeiro: LTC, 2018, ISBN: 8521635451, ISBN-13: 9788521635451 (disponível no e-Books).

- 1. GUIDORIZZI, H. L. **Um curso de cálculo, volume 4**, 6ª Ed Rio de Janeiro: LTC, 2018, ISBN: 852163546X, ISBN-13: 9788521635468 (disponível no e-Books).
- 2. BOYCE, W. **Equações Diferenciais Elementares e Problemas de Valores de Contorno**, 11ª Ed., Rio de Janeiro: LTC, 2020, ISBN: 8521636946, ISBN-13: 9788521636946 (disponível no e-Books).
- 3. BUSS, M.; FLEMMING, D. M. **Cálculo B**, 2ª Ed., São Paulo: Editora Pearson, 2007, ISBN: 8576051168, ISBN-13: 9788576051169 (disponível no e-Books).
- 4. SIMMONS, G. F. **Cálculo com Geometria Analítica, volume 2**, São Paulo: Editora Pearson, 1996, ISBN: 8576051168, ISBN-13: 9788576051169

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular CÁLCULO NUMÉRICO

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 2

Carga Horária Total 72 h Noturno 3

Teórico 54 h **Prático** 18 h **Extensão** 0 h

Pré-requisito (s) Algoritmos e Programação Computacional Obrigatório (s)

Pré-requisito (s) Cálculo I

Recomendado (s) Fundamentos de Álgebra Linear e Geometria Analítica

EMENTA

Sistemas numéricos e propagação de erros no computador. Resolução de sistemas lineares: método de eliminação de Gauss com e sem pivoteamento, decomposição LU; métodos iterativos de Jacobi e Gauss-Seidel e condições de convergência. Método dos mínimos quadrados. Zeros de funções de uma única variável: métodos intervalares e métodos abertos. Interpolação Polinomial e fenômenos de Runge. Integração Numérica: regra dos trapézios generalizada, regras 1/3 e 3/8 generalizadas de Simpson, introdução às quadraturas gaussianas. Resolução de equações diferenciais ordinárias em uma única variável pelo método de Euler explícito.

BIBLIOGRAFIA

Básica

- 1. BURDEN, Richard L.; FAIRES, J. Douglas. **Análise numérica**. Editora Cengage Learning, 3ª Edição, 2008. ISBN: 9788522123407 (disponível em e-book)
- 2. BURIAN, R.; LIMA, A. C.. Cálculo Numérico. Editora LTC, 2007. ISBN: 8521615620.
- 3. CHAPRA, S. C.; CANALE, R. P. **Métodos Numéricos para Engenharia**. 5.ed. São Paulo: McGraw-Hill, 2008. (disponível em e-book)
- 4. FRANCO, N. M. B.; **Cálculo Numérico**. Editora Pearson Prentice Hall, 2007. ISBN 8576050870 (disponível em e-book)
- 5. RUGGIERO, M. A. G.; LOPES, V. L. R.. **Cálculo Numérico Aspectos Teóricos e Computacionais**. 2a Edição. Editora Makron Books do Brasil, 1996. ISBN 85-87918-74-5.

- 1. BARROSO, L. C.; BARROSO, M. M. A.; CAMPOS FILHO, F. F.; BUNTE DE CARVALHO, M. L.; MAIA, M.
- L. **Cálculo Numérico (Com Aplicações)**. 2a Edição. Editora Harbra, 1987. ISBN: 8529400895. ISBN-13: 9788529400891.
- 2. GUIDORIZZI, H. L. **Um Curso de Cálculo**, vol. 1. Editora LTC, 5^a. Edição, 2001. ISBN: 9788521612599.
- 3. SPERANDIO, D.; MENDES, J. T.; MONKEN E SILVA, L. H. Cálculo Numérico: Características Matemáticas e Computacionais dos Métodos Numéricos. Editora Prentice-Hall, 2003. ISBN 85-87918-74-5.
- 4. LEITE, M. **SciLab: Uma abordagem prática e didática**. Editora Ciência Moderna, 2ª Edição, 2015. ISBN-13: 978-8539906574
- 5. CAMPOS FILHO, F. F. **Algoritmos numéricos: uma abordagem moderna de cálculo numérico**, 3ª Edição. Rio de Janeiro: LTC, 2018 (disponível em e-book)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ESTATÍSTICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 2

Carga Horária Total 72 h Noturno 3

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s)

Recomendado (s) Cálculo I

EMENTA

Estatística Descritiva. Cálculo de Probabilidades e Variáveis Aleatórias. Distribuições de Probabilidades. Amostragem e Distribuições Amostrais. Inferência Estatística. Análise de Variância. Análise de Regressão e Correlação.

BIBLIOGRAFIA

Básica

- 1. DEVORE, J.L. **Probabilidade e Estatística: para Engenharia e Ciências.** Editora Thomson Learning, 8ª Edição, 2015. ISBN-10: 8522111839, ISBN-13: 9788522111831 (disponível em e-Book).
- 2. TRIOLA, M.F. **Introdução à Estatística**, Editora LTC, 11ª Edição, 2015. ISBN: 9788521622062 (disponível em e-Book).
- 3. BARROS NETO, B.; SCARMINIO, I.S.; BRUNS, R.E. **Como fazer experimentos.** Editora Bookman Companhia Ed, Brasil, 4ª. Edição, 2010. ISBN-10: 8577806529, ISBN-13: 9788577806522 (disponível em e-Book).
- 4. MONTGOMERY, D.C.; RUNGER, G.C.; HUBELE, N.F. **Estatística Aplicada à Engenharia.** Editora: LTC, 2ª Edição, 2004. ISBN: 9788521613985 (disponível em e-Book).

- 1. MONTGOMERY, D.C. Introdução ao Controle Estatístico da Qualidade. Editora: LTC, 4ª Edição, 2004. ISBN: 8521614004, ISBN-13: 9788521614005 (disponível em e-Book).
- 2. BOX, G.E.P.; HUNTER, W.G.; HUNTER, J.S. Statistics for Experimenters: Design, Innovation, and Discovery. New York: John Wiley & Sons, 2005. ISBN: 9780471718130.
- 3. MONTGOMERY, D.C.; RUNGER, G.C. **Estatística Aplicada e Probabilidade para Engenheiros.** Editora LTC, 5ª Edição, 2012. ISBN: 9788521619024.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FÍSICA III

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 3

Carga Horária Total 72 h Noturno 3

Teórico 54 h **Prático** 18 h **Extensão** 0 h

Pré-requisito (s) Cálculo I Obrigatório (s) Física I Pré-requisito (s) Não há Recomendado (s)

EMENTA

Interação elétrica. Lei de Coulomb. Campo elétrico. Lei de Gauss. Potencial elétrico. Energia eletrostática. Capacitores e dielétricos. Corrente e resistência. Lei de Ohm. Leis de Kirchoff. Campo magnético. Lei de Ampère. Lei de Faraday e lei de Lenz. Magnetismo em meios materiais. Equações de Maxwell.

BIBLIOGRAFIA

Básica

- 1. TIPLER, P.A.; MOSCA, G. **Física para Cientistas e Engenheiros: Eletricidade e Magnetismo, Óptica volume 2**, 6ª Ed., Rio de Janeiro: Editora LTC, 2009, ISBN: 8521617119, ISBN-13: 9788521617112 (disponível no e-Books).
- 2. SERWAY, R.A.; JEWETT Jr., J.W. **Princípios de Física volume 3**; 8ª Ed.; São Paulo: Cengage Learning, 2014, ISBN: 8522116385, ISBN-13: 9788522116386 (disponível no e-Books).
- 3. YOUNG, H.D.; FREEDMAN, R.A.; SEARS, F.; ZEMANSKY, M.W. **Física III: Eletromagnetismo**, 14^a Ed. São Paulo: Pearson, 2016, ISBN: 854301591X, ISBN-13: 9788543015910 (disponível no e-Books).

- 1. NUSSENZVEIG, H. M. **Curso de Física Básica, volume 3**, 2ª Ed., São Paulo: Editora Blucher, 2015, ISBN: 8521208014, ISBN-13: 9788521208013 (disponível no e-Books).
- 2. CHAVES, A.; SAMPAIO, J. F. **Física Básica Eletromagnetismo**, 1ª Ed., Rio de Janeiro: LTC, 2007, ISBN: 8521615507, ISBN-13: 9788521615507.
- 3. HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física Eletromagnetismo volume 3, 10^a Ed., Rio de Janeiro: LTC, 2016, ISBN: 8521630379, ISBN-13: 9788521630371 (disponível no e-Books).
- 4. LUIZ, A. M. **Física 3: Eletromagnetismo: Teoria e problemas resolvidos**, 1ª Ed. São Paulo: Livraria da Física, 2009, ISBN: 8578610105, ISBN-13: 9788578610104.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FÍSICO QUÍMICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 3

Carga Horária Total 36 h Noturno 3

Teórico 36 h Prático 0 h Extensão 0 h

Pré-requisito (s) Química Geral

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Moléculas em movimento nos gases, líquidos e processos de difusão. Velocidade das reações química e cinética das reações complexas (reações em cadeia, polimerização, catálise homogênea e fotoquímica). Dinâmica molecular de reações. Processos nas superfícies sólidas.

BIBLIOGRAFIA

Básica

- 1. Atkins, P., Paula, J. **Físico-química**. Vol. 2, 9^a ed., Ed. LTC. ISBN: 9788521621058. (Disponível no e-Books UNIFESP).
- 2. CREMASCO, M.A. **Fundamentos de Transferência de Massa**, Editora da UNICAMP, 1998. ISBN: 8526805959. (Capítulo 1).
- 3. LEVENSPIEL, O. **Engenharia das Reações Químicas**, Ed. Edgard Blucher, 3ª ed., 2000, ISBN: 9788521202752. (Cinética Química).
- 4. LEVINE, I.N. Físico-química. 6. ed. Rio de Janeiro: LTC, 2012. vol. 2. ISBN: 9788521606611.

- 1. CASTELLAN, G.W. **Fundamentos de físico-química**. 1. ed. Rio de Janeiro: LTC, 1986. ISBN: 9788521604891.
- 2. BALL, D.W. **Físico-química**. São Paulo, SP: Pioneira Thomson Learning, 2005-2006. 2 v. ISBN: 8522104174 (v.1).
- 3. MCQUARRIE, D.A., **Physical Chemistry: A Molecular Approach**. 1997, Sausalito, University Science Books. ISBN-13: 9780935702996 / ISBN-10: 0935702997.
- 4. CHANG, R. **Físico-química para as ciências químicas e biológicas**. V.2. 3. AMGH, 2010. ISBN: 9788563308306. (Disponível no e-Books).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular INTRODUÇÃO À ENGENHARIA QUÍMICA

ENGENHARIA QUÍMICA Curso Termo de oferecimento Integral 2 3

Noturno Carga Horária Total 36 h

Teórico 36 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há

Obrigatótio (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Engenharia Química: finalidade da disciplina; Origem e história da Engenharia Química; áreas de atuação do engenheiro químico e suas interdisciplinaridades. Gases Ideais. Conceitos e cálculos básicos da Engenharia Química; A indústria de Processos Químicos; Estequiometria Industrial.

BIBLIOGRAFIA

Básica

- 1. CREMASCO, M.A. Vale a pena estudar Engenharia Química, São Paulo: Blucher, 2005.
- 2. CREMASCO, M.A. Vale a pena estudar Engenharia Química, 3ª edição, São Paulo: Blucher, 2015. ISBN: 9788521208167. Ebook.(+)
- 3. BROWN, L.S.; HOME, T.A. Química Geral aplicada à Engenharia Química, Editora Cengage Learning, 2009. ISBN: 108522106886.

- 1. GOMIDE, R., Estequiometria Industrial. 2a Edição, Editora Kosmos, 1979.
- 2. HIMMELBLAU, D. M., RIGGS, J.B. Engenharia Química: Princípios e Cálculos. 7a Edição, Editora LTC, 2006.
- 3. HIMMELBLAU, D. M., RIGGS, J.B. Engenharia Química: Princípios e Cálculos. 8ª Edição, Editora LTC, 2014. ISBN: 9788521627111. Ebook.(+)
- 4. DO BRASIL, N.I. "Introdução a Engenharia Química", 2 ed. Rio de Janeiro, Interciência: Petrobras,
- 5. FELDER, R. M. Princípios elementares dos processos químicos. 4ª edição. Rio de Janeiro LTC 2017. ISBN 9788521634935. Ebook (+)
- (+) Referências disponíveis na biblioteca virtual.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Unidade Curricular BALANÇO DE MASSA E ENERGIA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 3
Carga Horária Total 72 h Noturno 4

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s) Introdução à Engenharia Química **Recomendado (s)** Química Geral

Cálculo I

EMENTA

Lei da conservação da massa e energia. Balanço de massa com e sem reação química em processos químicos. By-pass, reciclo e combustão. Sistemas bifásicos gás-líquido e equilíbrio líquido-vapor. Balanço de massa envolvendo condensação/evaporação. Balanço de energia com e sem mudança de fase em processos químicos. Balanços de massa e energia combinados.

BIBLIOGRAFIA

Básica

- 1. FELDER, R.M.; ROUSSEAU, R.W. **Princípios Elementares de Processos Químicos**. 3ª Edição. Editora LTC, 2005. ISBN: 8521614292.
- 2. HIMMELBLAU, D.M.; RIGGS, J.B. **Engenharia Química: Princípios e Cálculos**. 7ª Edição, Editora LTC, 2006. ISBN: 8521626088.
- 3. PERRY, R.H.; PERRY, J.H. **Chemical Engineers'Handbook**. McGraw-Hill Education; 8 edition. ISBN-10: 0071422943.

- 1. GOMIDE, R. Estequiometria Industrial. 2ª Edição, Editora Kosmos, 1979. ISBN: 0005880238.
- 2. MURPHY, R.M. Introduction to Chemical Processes: Principles, analysis, synthesis. Editor McGraw-Hill, 2007. ISBN-10: 0072849606.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular CÁLCULO IV

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 4

Carga Horária Total 72 h Noturno 4

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Cálculo III

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Cálculo de uma variável complexa. Transformadas integrais (Fourier e Laplace). A função delta de Dirac. Séries de Fourier. EDP do calor e EDP das ondas e o método de separação de variáveis. Funções especiais.

BIBLIOGRAFIA

Básica

- 1. ARFKEN, G. B.; WEBBER, H. J; Harris, F. E. **Física Matemática: Métodos Matemáticos para Engenharia e Física**, 7^a Ed., Rio de Janeiro: LTC, 2017, ISBN: 8535287345, ISBN-13: 9788535287349 (disponível no e-Rooks
- 2. BUTKOV, E. Física Matemática, Rio de Janeiro: LTC, 1988, ISBN: 8521611455, ISBN-13: 9788521611455

- 1. GUIDORIZZI, H. L. **Um curso de cálculo, volume 4**, 6ª Ed., Rio de Janeiro: LTC, 2018, ISBN: 852163546X, ISBN-13: 9788521635468 (disponível no e-Books).
- 2. BOYCE, W. **Equações Diferenciais Elementares e Problemas de Valores de Contorno**, 11ª Ed., Rio de Janeiro: LTC, 2020, ISBN: 8521636946, ISBN-13: 9788521636946 (disponível no e-Books).
- 3. KAPLAN, W.; **Cálculo Avançado, volume 2**, 1ª Ed., 13ª reimpressão, São Paulo: Editora Blucher, 2014, ISBN: 8521200498, ISBN-13: 9788521200499 (disponível no e-Books).
- 4. ZILL, D. G.; CULLEN, M. R. Matemática Avançada para Engenharia, volume 3, 3ª Ed., Porto Alegre: Bookman, 2009, ISBN: 8577805624, ISBN-13: 9788577805624 (disponível no e-Books)
- 5. BROWN, J. W.; CHURCHIL, R. H. **Variáveis Complexas e Aplicações**, 9ª Ed. Porto Alegre: AMGH, 2015, ISBN: 8580555175, ISBN-13: 9788580555172 (disponível no e-Books).
- 6. MORSE, P.M.; FESHBACH, H. **Methods of Theoretical Physics**, Volume 1, McGraw-Hill Book Company, 1981, ISBN: 007043316X, ISBN-13: 9780070433168
- 7. MORSE, P.M.; FESHBACH, H. **Methods of Theoretical Physics**, Volume 2, McGraw-Hill Book Company, 1981, ISBN: 0070433178, ISBN-13: 9780070433175.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FÍSICA IV

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 4

Carga Horária Total 72 h Noturno 4

Teórico 54 h Prático 18 h Extensão 0 h

Pré-requisito (s) Cálculo III
Obrigatório (s) Física III
Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Ótica: propriedades da luz, imagens óticas. Interferências e Difração, Mecânica Quântica e a estrutura da matéria. Dualidade onda-partícula. Aplicações da equação de Schrödinger, Átomos, Sólidos. Movimento Periódico. Ondas mecânicas. Interferência de Ondas e Modos Normais. Som.

BIBLIOGRAFIA

Básica

- 1. YOUNG, H.D.; FREEDMAN, R.A.; SEARS, F.; ZEMANSKY, M.W. **Física II: Termodinâmica e Ondas**, 14^a Ed. São Paulo: Pearson, 2015, ISBN: 8543005736, ISBN-13: 9788543005737 (disponível no e-Books).
- 2. YOUNG, H.D.; FREEDMAN, R.A.; SEARS, F.; ZEMANSKY, M.W. **Física IV**: **Ótica e Física Moderna**, 14ª Ed. São Paulo: Pearson, 2016, ISBN: 8543006716, ISBN-13: 9788543006710 (disponível no e-Books).
- 3. TIPLER, P.A.; RALPH, A. **Física Moderna**, 6ª Ed., Rio de Janeiro: Editora LTC, 2014, ISBN: 852162607X, ISBN-13: 9788521626077 (disponível no e-Books).

- 1. CARUSO, F.; OGURI, V., **Física Moderna Origens Clássicas e Fundamentos Quânticos**, 2ª Ed., Rio de Janeiro: Editora LTC, 2016, ISBN: 8521630948, ISBN-13: 9788521630944 (disponível no e-Books).
- 2. TIPLER, P.A.; MOSCA, G. **Física para Cientistas e Engenheiros: Física Moderna volume 3**, 6ª Ed., Rio de Janeiro: Editora LTC, 2009, ISBN: 8521617127, ISBN-13: 9788521617129 (disponível no e-Books).
- 3. NUSSENZVEIG, H. M. **Curso de Física Básica, volume 4**, 2ª Ed., São Paulo: Editora Blucher, 2014, ISBN: 8521208030, ISBN-13: 9788521208037 (disponível no e-Books).
- 4. HALLIDAY, D.; RESNICK, R.; KRANE, R, KENNETH, S. **Física 4**, 5^a Ed., Rio de Janeiro: LTC, 204, ISBN: 8521614063, ISBN-13: 9788521614067 (disponível no e-Books).
- 5. CAVALCANTE, M.A.; TAVOLARO, C.R.C. Física Moderna Experimental. 2ª ed. Barueri: Editora Manole, 2007, ISBN-10: 8520426220, ISBN-13: 9788520426227

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FUNDAMENTOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 3
Carga Horária Total 72 h Noturno 4

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s)
Recomendado (s)

EMENTA

Introdução à resistência de materiais, Equilíbrio estáticos dos corpos rígidos, Tensões normais e de Cisalhamento, Estados de Tensão, Círculo de Mohr, Equações Constitutivas, Torção, Flexão, Flambagem, Método dos Elementos Finitos e Aplicações.

BIBLIOGRAFIA

Básica

- 1. HIBBELER, R.C. **Mecânica para Engenharia**. Vol. Estática. São Paulo. Ed. Pearson Prentice Hall. 12ª edição. 2011;
- 2. MERIAM, J.L.; KRAIGE, L.G. **Engenharia Mecânica**. Vol. Estática. Ed. Livro Técnico Científico S.A. 5ª edição. R.J. 2014;
- 3. BEER, F.P.; JOHNSTON, R.E.; EISENBERG, E.R. **Mecânica Vetorial para Engenheiros**. Vol. Estática. Ed. MacGraw-Hill. 11ª edição. SP. 2019. (disponível nos e-Books)
- 4. MELCONIAN, S. **Mecânica Técnica e Resistência dos Materiais**. 19. ed. São Paulo: Ed. Érica, 2012. (disponível nos e-Books)
- 5. HIBBELER, R. C. Resistência dos Materiais. 5. ed. São Paulo: Pearson, 2004.

- 1. UGURAL, A.C., Mechanics of Materials, Wiley, Hoboken, N.J., 2008.
- 2. MERIAM, J.L.; KRAIGE, L.G. **Mecânica para Engenharia: Estática**. Vol. 1, Ed. Livro Técnico Científico S.A. 7ª edição. R.J. 2018. (disponível nos e-Books)
- 3. NELSON, E. W.; BEST, C. L. McLEAN, W. G.; POTTER, M. C. **Engenharia Mecânica Estática**. São Paulo: Ed. Bookman LTDA., 2ª Edição, 2013. (disponível nos e-Books)
- 4. NÓBREGA, J.C. Mecânica Geral. Vol. Estática. Ed. FEI. S.P. 1980.
- 5. GIACAGLIA, G.E.O. Mecânica Geral. Vol. 1. São Paulo. Livraria Nobel S/A. 1976.
- 6. KAMINSKI, P.C. Mecânica Geral para Engenheiros. Ed. Edgard Blücher Ltda. 1ª edição. 2000. S.P.
- 7. FRANÇA, L.N.F.; MATSUMURA, A.Z. **Mecânica Geral**. Vol. Estática. Ed. Edgard Blücher Ltda. 1ª edição. S.P. 2001
- 8. POPOV, E. P. Introdução à Mecânica dos Sólidos. São Paulo: Edgard Blucher, 2ª Edição, 1998.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

2

Unidade Curricular QUÍMICA ANALÍTICA GERAL I

36 h

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral

Prático 36 h

Carga Horária Total 72 h Noturno 5

Extensão 0 h

Pré-requisito (s) Química Geral Obrigatório (s) Pré-requisito (s) Não há Recomendado (s)

Teórico

EMENTA

Introdução à química analítica, abordando processos qualitativos e quantitativos de análise química de espécies inorgânicas a partir dos conceitos de equilíbrio químico e do comportamento dessas espécies em solução aquosa. Erros em análise química; exatidão e precisão. Aspectos termodinâmicos do equilíbrio químico. Soluções aquosas e eletrólitos. Equilíbrio e volumetria ácido-base. Equilíbrio de complexos e complexometria. Condutometria e titulação condutométrica.

BIBLIOGRAFIA

Básica

- 1. Harris, D.C; Lucy, C.A. **Análise Química Quantitativa**. 9a. ed. São Paulo: LTC, 2017. ISBN-10 8521634382, ISBN-13 978-8521634386.
- 2. Skoog, D. et. al. **Fundamentos de química analítica**. 9a ed. São Paulo: Cengage Learning, 2014. ISBN-10 8522116601, ISBN-13 978-8522116607.
- 3. Fatibello Fo., O. **Equilíbrio iônico. Aplicações em química analítica**. 2a. ed. São Carlos: Edufscar, 2019. ISBN 978-65-80216-05-5.
- 4. Mendham, J. et. al. **Vogel, Análise química quantitativa**. 6a. ed. Rio de Janeiro: LTC, 2002. ISBN 8521613114, ISBN-13: 978-8521613114.
- 5. Vogel, A.I. Química Analítica Qualitativa. São Paulo: Editora Mestre Jou, 1988. ISBN-13 9788587068019.

- 1. Fatibello Fo., O. et. al. **Potenciometria: aspectos teóricos e práticos**. São Carlos: Edufscar, 2019. ISBN 978-85-906962-7-8.
- 2. Christian, G.D. et. al. **Analytical Chemistry**, 7a. ed., Hoboken: John Wiley & Sons, 2014. ISBN 978-0-470-88757-8.
- 3. Lenzi, E.; Favero, L.O.B.; Luchese, E.B. **Introdução à química da água**. Rio de Janeiro: LTC, 2009.ISBN 9788521616795.
- 4. Oliveira, A.F. Equilíbrio em Solução Aquosa Orientados à Aplicação: sistemas ácido-base de Bronsted e outros equilíbrios. São Paulo: Àtomo, 2009. ISBN 978-85-7670-124-8.
- 5. Wright, M.R. **An Introduction to Aqueous Electrolyte Solutions**. West Sussex: John Wiley & Sons, 2007. ISBN 978-0-470-84294-2.
- 6. Journal of Chemical Education
- 7. Analytical Chemistry
- 8. Química Nova

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular CIÊNCIA E ENGENHARIA DOS MATERIAIS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 5
Carga Horária Total 72 h Noturno 6

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s)
Recomendado (s)
Estrutura da Matéria

EMENTA

Introdução à Ciência dos Materiais. Ligações Químicas. Arranjos atômicos. Cristalografia e Difração de Raios-X. Imperfeições Estruturais. Microestrutura. Difusão. Diagramas de Fases. Crescimento de Cristais. Estrutura e Propriedades dos Materiais Metálicos. Estrutura e Propriedades dos Materiais Poliméricos. Estrutura e Propriedades dos Materiais Compósitos. Propriedades Eletrônicas dos Materiais. Aplicações dos materiais.

BIBLIOGRAFIA

Básica

- 1. CALLISTER JUNIOR, WILLIAM D. **Ciência e engenharia de materiais uma: introdução** Rio de Janeiro: LTC, 9ª. Ed., 2016, ISBN 9788521632375 (disponível nos e-Books)
- 2. CALLISTER Jr., W. D. Ciência e Engenharia de Materiais: Uma Introdução, LTC, 8ª. Ed., 2012, Rio de Janeiro. ISBN: 8521621248.
- 3. SMITH, W.F. **Princípios de Ciência e Engenharia dos Materiais**, Editora McGraw-Hill, 3ª Ed. 1998. ISBN: 9728298684 /9789728298685.
- 4. LOCKENSGARD, E. **Plásticos Industriais, Teoria e Aplicações**. Cengage Learning, Trad. 5ª ed., 2013, São Paulo. ISBN-10: 8522111871 / ISBN-13: 9788522111879.
- 5. ASKELAND, D.R.; WRIGHT, W.J. **Ciência e Engenharia dos Materiais**. Cengage Learning. Trad. 3ª ed. São Paulo. ISBN-10: 8522112851, ISBN-13: 9788522112852.
- 6. VAN VLACK, L.H. **Princípios de ciência e tecnologia dos materiais**. Rio de Janeiro: Campus, 2003. 567 p. ISBN: 9788570014801.

- 1. SHACKELFORD, J.F. Introduction to materials science for engineers. 7th ed. Upper Saddle River: Pearson Prentice Hall, 2009. 533 p. ISBN: 9780136012603.
- 2. ASKELAND, D.R.; PHULÉ, P.P., Ciência e Engenharia dos Materiais. Cengage Learning, 2008, São Paulo, ISBN-10: 8522105987 /ISBN-13: 9788522105984.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FENÔMENOS DE TRANSPORTE I

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 4
Carga Horária Total 72 h Noturno 5

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Cálculo II para Engenharia Química Obrigatório (s)

Pré-requisito (s)
Recomendado (s)
Balanço de Massa e Energia

EMENTA

Propriedades dos fluidos. Viscosidade. Classificação dos fluidos. Hidrostática. Manometria. Teorema de Transporte de Reynolds. Balanços integrais de massa e quantidade de movimento. Balanço de energia. Medidores de vazão. Campos de velocidade e aceleração. Balanços diferenciais de massa e quantidade de movimento. Escoamentos em regime laminar e turbulento. Camada limite hidrodinâmica. Escoamento em condutos fechados.

BIBLIOGRAFIA

Básica

- 1. ÇENGEL, Y.A.; CIMBALA, J.M. **Mecânica dos fluidos: fundamentos e aplicações**. São Paulo: McGraw Hill, 3ª ed, 2015, ISBN: 9788580554908. (disponível no e-Books)
- 2. FOX, R.W.; McDONALD, A.T., PRITCHARD, P. J., MICHTELL, J. W. Introdução à Mecânica dos Fluidos, Editora LTC, 9ª Edição, 2018, ISBN: 8521634811. (disponível no e-Books)
- 3. WHITE, F.M. **Mecânica dos fluidos**. 8ª ed. São Paulo: McGraw Hill, 2018, ISBN: 8580556066. (disponível no e-Books)
- 4. ELGER, Donald F. **Mecânica dos Fluidos para Engenharia, 11ª edição.** Editora: LTC Ed. (Grupo GEN), 2019. ISBN: 9788521636168. (disponível no e-Books)

- 1. MUNSON, B.R.; YOUNG, D.F.; OKIISHI, T.H. Fundamentos da Mecânica dos Fluidos. tradução da 4a edição americana, São Paulo: Editora Edgard Blücher, 2004. 584 p. ISBN-10: 8521203438. **(disponível no e-Books)**
- 2. POTTER, M.C. Mecânica dos Fluidos. tradução da 4a edição Americana, São Paulo: Cengage Learning Ed., 2014. 688 p. ISBN: 8522115680. (disponível no e-Books)
- 3. BIRD, R.B.; STEWART, W.E.; LIGHTFOOT, E.N. Fenômenos de Transporte, Ed. LTC (Grupo GEN); 2a Edição Revisada, 2004, ISBN-10: 8521613938, ISBN-13: 9788521613930.
- 4. GIORGETTI, M.F. Fundamentos de Fenômenos de Transporte para Estudantes de Engenharia. Rio de Janeiro, Ed LTC (Grupo GEN), 2015. 512p, ISBN: 8535271651.
- 5. ROMA, W.N.L. Fenômenos de Transporte para Engenharia. São Carlos, Editora RiMa, 2ª. Edição, 2006. 276p. ISBN-10: 8576560860, ISBN-13: 9788576560869.
- 6. BRUNETTI, F. Mecânica dos Fluidos, 2ª ed., Prentice Hall, São Paulo-SP, 2008. ISBN: 8576051826. **(disponível no e-Books)**

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

3

Unidade Curricular QUÍMICA ANALÍTICA GERAL II

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral

Carga Horária Total 72 h Noturno 6

Teórico 36 h **Prático** 36 h **Extensão** 0 h

Pré-requisito (s) Química Analítica Geral I

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Introdução à química analítica, abordando processos qualitativos e quantitativos de análise química de espécies inorgânicas a partir dos conceitos de equilíbrio químico e do comportamento dessas espécies em solução aquosa. Equilíbrio e produto de solubilidade. Volumetria de precipitação. Análise gravimétrica. Equilíbrio e volumetria de óxido-redução. Potenciometria e titulação potenciométrica.

BIBLIOGRAFIA

Básica

- 1. Harris, D.C; Lucy, C.A. **Análise Química Quantitativa**. 9a. ed. São Paulo: LTC, 2017. ISBN-10 8521634382, ISBN-13 978-8521634386.
- 2. Skoog, D. et. al. **Fundamentos de química analítica**. 9a ed. São Paulo: Cengage Learning, 2014. ISBN-10 8522116601, ISBN-13 978-8522116607.
- 3. Fatibello Fo., O. **Equilíbrio iônico. Aplicações em química analítica**. 2a. ed. São Carlos: Edufscar, 2019. ISBN 978-65-80216-05-5.
- 4. Mendham, J. et. al. Vogel, **Análise química quantitativa**. 6a. ed. Rio de Janeiro: LTC, 2002. ISBN 8521613114. ISBN-13: 978-8521613114.
- 5. Vogel, A.I. Química Analítica Qualitativa. São Paulo: Editora Mestre Jou, 1988. ISBN-13 9788587068019.

- 1. Fatibello Fo., O. et. al. **Potenciometria: aspectos teóricos e práticos**. São Carlos: Edufscar, 2019. ISBN 978-85-906962-7-8.
- 2. Christian, G.D. et. al. **Analytical Chemistry**, 7a. ed., Hoboken: John Wiley & Sons, 2014. ISBN 978-0-470-88757-8.
- 3. Lenzi, E.; Favero, L.O.B.; Luchese, E.B. **Introdução à química da água**. Rio de Janeiro: LTC, 2009.ISBN 9788521616795.
- 4. Oliveira, A.F. Equilíbrio em Solução Aquosa Orientados à Aplicação: sistemas ácido-base de Bronsted e outros equilíbrios. São Paulo: Àtomo, 2009. ISBN 978-85-7670-124-8.
- 5. Wright, M.R. **An Introduction to Aqueous Electrolyte Solutions**. West Sussex: John Wiley & Sons, 2007. ISBN 978-0-470-84294-2.
- 6. Journal of Chemical Education
- 7. Analytical Chemistry
- 8. Química Nova

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular QUÍMICA ORGÂNICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 3

Carga Horária Total 72 h

Teórico 72 h

Prático 0 h

Extensão 0 h

Pré-requisito (s) Estrutura da Matéria

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Apresentação dos conceitos fundamentais em química orgânica e das principais funções orgânicas. Estereoquímica e análise conformacional; correlação da estrutura tridimensional com a atividade biológica. Ácidos e bases orgânicos. Noções básicas estrutura química, propriedades físico-químicas e reatividade das principais funções orgânicas: alcanos, alcenos e alcinos, compostos aromáticos, álcoois, fenóis e éteres, haletos de alquila, aldeídos e cetonas, ácidos carboxílicos e derivados, aminas.

BIBLIOGRAFIA

Básica

- 1. CONSTANTINO, M.G. **Química Orgânica**. Um Curso Universitário. 1 ed. Rio de Janeiro: LTC, 2008. v. 1. ISBN: 9788521615910.
- 2. SOLOMONS, T.W.G.; FRYHLE, C.B. **Química Orgânica**. 8 ed. Rio de Janeiro: LTC, 2006. v.1 e 2. ISBN: 9788521620334.
- 3. VOLLHARDT, K.P.C.; SCHORE, N.E. **Química Orgânica**. Estrutura e Função. 4 ed. Porto Alegre: Bookman, 2003. ISBN: 9788565837033.

- 1. CLAYDEN, J.; GREEVES, N.; WARREN, S.; WOTHERS, P. **Organic Chemistry**. New York: Oxford Univ. Press, 2001. ISBN-10: 0199270295. ISBN-13: 9780199270293.
- 2. BROWN, W.H. Introduction to Organic Chemistry. San Antonio: Saunders College Publishing, 1997.
- 3. BROWN, T.L.; LeMAY, Jr., H.E.; BURSTEN, B.E.; BURDGE, J.R. **Química. A ciência central**. 9 ed. São Paulo: Pearson, 2005. ISBN: 9788587918420.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular TERMODINÂMICA I

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 4

Extensão 0 h

Carga Horária Total 72 h **Noturno** 5

Teórico

Prático 0 h

Pré-requisito (s) Cálculo II para Engenharia Química Obrigatório (s)

Pré-requisito (s) Balanço de Massa e Energia Recomendado (s)

72 h

EMENTA

1ª Lei da Termodinâmica. Equações de estado para fluidos puros. 2a Lei da Termodinâmica. Ciclos de geração de potência e de refrigeração. Propriedades termodinâmicas dos fluidos. Conceitos fundamentais.

BIBLIOGRAFIA

Básica

- 1. SANDLER, S.I. Chemical and Engineering Thermodynamics. John Wiley & Sons, 2nd edition, 1989. ISBN 0-471-83050-X.
- 2. SMITH, J.M., VAN NESS, H.C., ABBOTT, M.M. Introdução à Termodinâmica da Engenharia Química, 7ª Edição - 2007, Editora: LTC, Rio de Janeiro. ISBN 8521615531.

- 1. DAUBERT, T.E. Chemical Engineering Thermodynamics, McGraw-Hill, 1985.
- 2. VAN WYLEN, G.; SONNTAG, R.; BORGNAKKE, C. Fundamentos da Termodinâmica Clássica, Edgar Blucher Ltda, 4a edição, 1995.
- 3. TESTER, J. W.; MODELL, M. Thermodynamics and its Applications, Editora Prentice Hall, 3a Edição, 1996.
- 4. WINNICK, J. Chemical Engineering Thermodynamics: An Introduction to Thermodynamics for Undergraduate Engineering Students, Editora John Wiley&Sons, 1996.
- 5. ELLIOT, J. R. LIRA, C. T. Introductory Chemical Engineering Thermodynamics, London: Prentice-Hall International, 1a Edição, 1999.
- 6. PASSOS, J.C. A importância do trabalho de carnot para o ensino da termodinâmica, Congresso Brasileiro de Ensino de Engenharia (CD-Rom), IME, Rio de Janeiro, p. 1-11.
- 7. MOREIRA, M.A. Energia Entropia e Irreversibilidade. UFRGS, Porto Alegre, 1999, Grupo de Ensino de Física. Textos de Apoio ao Professor de Física, n. 9.
- 8. PASSOS, J.C. Os experimentos de Joule e a primeira lei da termodinâmica. Rev. Bras. Ensino Fís. vol.31 no.3 São Paulo July/Sept. 2009.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

5

6

Unidade Curricular FENÔMENOS DE TRANSPORTE II

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral

Carga Horária Total 72 h Noturno

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Fenômenos de Transporte I Obrigatório (s)

Pré-requisito (s)
Recomendado (s)
Cálculo IV

EMENTA

Conceitos fundamentais de transferência de calor. Equações da taxa de calor para condução, convecção e radiação. Equação da Condução do Calor. Condução de calor unidimensional em regime permanente e transiente. Condução de calor bidimensional. Convecção forçada externa. Convecção forçada interna. Transferência de calor com mudança de fase. Introdução à convecção natural. Influência dos efeitos espaciais sobre a transferência de calor.

BIBLIOGRAFIA

Básica

- 1 INCROPERA, F.P.; DEWITT, D.P.; BERGMAN, T.L.; LAVINE, A.S. Fundamentos de Transferência de Calor e de Massa. Editora LTC, 7a ed., 2014. ISBN-10: 8521625049; ISBN-13: 978-8521625049.
- INCROPERA, F.P.; DEWITT, D.P.; BERGMAN, T.L.; LAVINE, A.S. **Fundamentos de transferência de calor e de massa**. 8. Rio de Janeiro, LTC 2019, recurso *online* ISBN 9788521636656. (disponível no e-Books)
- 2- ÇENGEL, Y.A.; GHAJAR, A.J. **Transferência de Calor e Massa: Uma abordagem prática**. AMGH, 4ª ed., 2012. ISBN-10: 8580551277; ISBN-13: 978-8580551273. (disponível no e-Books)
- 3- KREITH, F.; BOHN, M. **Princípios de transferência de calor**. Thomson Pioneira, 2003. ISBN 8522102848.

KREITH, F.; BOHN, M. **Princípios de transferência de calor**. 2. São Paulo, Cengage Learning 2015, recurso *online* ISBN 9788522122028. (disponível no e-Books)

- 1. BEJAN, A. Transferência de Calor. 2ª. ed, Edgard Blucher, 2004. ISBN 8521200269.
- SOUSA DIAS, L. R. Operações que envolvem transferência de calor e massa. Editora Interciência, 2009, ISBN 8571932123.
- 3. MORAN, M.J. et al. Introdução à engenharia de sistemas térmicos: termodinâmica, mecânica dos fluidos e transferência de calor. LTC, 2005. ISBN 9788521614463.
- 4. SCHMIDT, F.W.; HENDERSON, R.E.; WOLGEMUTH, C.H. Introdução às ciências térmicas: termodinâmica, mecânica dos fluidos e transferência de calor. 2ª. ed, Edgard Blücher, 1996. ISBN 852120082X.
- 5. CHAPRA, S.C.; CANALE, R. P. **Métodos numéricos para engenharia** 5a ed. McGraw-Hill, 2008, ISBN 9788586804878.
- 6. CHAPRA, S. C. **Métodos numéricos para engenharia**. 7. Porto Alegre, AMGH 2016, recurso *online* ISBN 9788580555691. (disponível no e-Books)
- 7. MALISKA, C.R. **Transferência de Calor e Mecânica dos Fluidos Computacional**. 2ª. ed, LTC, 2004. ISBN: 9788521613961. (disponível no e-Books)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular OPERAÇÕES UNITÁRIAS I Curso ENGENHARIA QUÍMICA

Termo de oferecimento Integral 5

Carga Horária Total 72 h

Noturno 6

Teórico 72 h

Prático 0 h

Extensão 0 h

Pré-requisito (s) Fenômenos de Transporte I

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Equipamentos para transporte de fluidos: bombas e compressores. Dinâmica de escoamento de partículas em fluidos. Colunas de recheio. Fluidização. Transporte hidráulico e pneumático. Filtração. Sedimentação. Centrifugação. Tratamento e separação de sólidos. Agitação e mistura.

BIBLIOGRAFIA

Básica

- 1. CREMASCO, M.A. **Operações unitárias em sistemas particulados e fluidomecânicos**. 2ª edição. São Paulo: Blücher, 2014. 423 p. ISBN 9788521208556. (disponível no e-Books)
- 2. MCCABE, W.L.; SMITH, J.C.; HARRIOTT, P. **Unit operations of chemical engineering**. 7th ed. Boston: McGraw-Hill, 2005. 1140 p. (McGraw-Hill chemical engineering series). ISBN 0071247106.
- 3. FOUST, A.S.; WENZEL, L.A.; CLUMP, C.W.; MAUS, L.; ANDERSEN, L.B. **Princípios das operações unitárias**. 2.ed. Rio de Janeiro: LTC, 1982. 670 p. ISBN 9788521610380.
- 4. TADINI, C.C. et al. **Operações Unitárias na Indústria de Alimentos**, vol. 1, 1ª ed. Rio de Janeiro: LTC, 2018. ISBN 978-85-216-3033-3. (disponível no e-Books)

- 1. GREEN, D.W.; PERRY, R.H. (Ed.). **Perry's chemical engineers' handbook**. 8th ed. New York: McGraw-Hill, 2007. ISBN 9780071422949.
- 2. TERRON, L.R. Operações unitárias para químicos, farmacêuticos e engenheiros: fundamentos e operações unitárias do escoamento de fluidos. Rio de Janeiro: LTC, 2012. 589 p. ISBN 9788521621065. (disponível no e-Books)
- 3. MASSARANI, G. **Fluidodinâmica em sistemas particulados**. 2.ed. Rio de Janeiro: E-Papers, 2002. 152 p. ISBN 8587922327.
- 4. MACINTYRE, A.J. **Bombas e instalações de bombeamento**. 2.ed. rev. Rio de Janeiro: LTC, 1997. 782 p. ISBN 9788521610861.
- 5. CHAVES, A.P.; PERES, A.E.C. **Britagem, peneiramento e moagem**. 5. ed. rev. e ampl. São Paulo: Oficina de Livros, 2012. 324 p. (Teoria e prática do tratamento de minérios; v. 3). ISBN 9788579750618.
- 6. JOAQUIM JUNIOR, C.F. **Agitação e mistura na indústria**. Rio de Janeiro: LTC, 2007. 222 p. ISBN 9788521615712.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular QUÍMICA ORGÂNICA EXPERIMENTAL

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 4
Carga Horária Total 108 h Noturno 5

Teórico 36 h Prático 72 h Extensão 0 h

Pré-requisito (s) Química Orgânica

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Conhecimento dos métodos de segurança e das técnicas básicas empregadas no laboratório de química orgânica. Técnicas de extração: sólido-líquido e líquido-líquido. Técnicas de refluxo. Preparação e técnicas de purificação de substâncias orgânicas: cromatografia, destilação simples, fracionada e por arraste a vapor. Determinação de pureza de compostos orgânicos através de constantes físicas. Purificação de sólidos por recristalização. Análises espectroscópicas de substâncias obtidas no laboratório. Fundamentação teórica de métodos espectroscópicos: espectroscopias no ultravioleta, no infravermelho e de ressonância magnética nuclear e espectrometria de massas.

BIBLIOGRAFIA

Básica

- 1. Pavia, D.L.; Engel, R.G.; Kriz, G.S.; Lampman, G.M. **Química Orgânica Experimental Técnicas em Pequena Escala**, São Paulo: Cengage Learning, 3ª. Ed. 2016. (disponível no e-book)
- 2. Pavia D.L., Lampman G.M., Kriz G.S., Vyvyan J.R. **Introdução à espectroscopia**, São Paulo: Cengage Learning, 2ª. Ed, 2016. (disponível no e-book).
- 3. Silverstein R., Webster X. e Kiemie D.J. **Identificação Espectrométrica de Compostos Orgânicos**, Rio de Janeiro: LTC, 7ª. Ed., 2006.
- 4. Collins, C.H.; Braga, G.L.; Bonato, P. S. **Fundamentos de cromatografia**, 1. ed. Campinas: Editora da Unicamp. 2006.
- 5. Vogel, A.I.; Tatchell, A.R.; Furnis, B.S.; Hannaford, A.J.; Smith, P.W.G. **Vogel's Textbook of Practical Organic Chemistry**. United Kingdom: Prentice Hall, 5^a Ed, 1989.
- 6. Dias G., Costa M.A., Guimarães P.I.C. **Guia Prático de Química Orgânica Técnicas e Procedimentos**, Rio de Janeiro: Interciência, 1ª. Ed., 2004.
- 7. Lanças F.M. Cromatografia líquida moderna HPLC/CLAE. 1a. ed. Campinas: Editora Átomo, 2009.

- 1. Ault, A. Techniques and Experiments for Organic Chemistry, 6th ed., 1998.
- 2. Roberts, R.M.; Gilbert, J.C.; Rodewald, L.B.; Wingrove, A.S. **Modern Experimental Organic Chemistry**, 4th ed., 1985.
- 3. Harwood, L.M.; Moody, C.J. Experimental Organic Chemistry Principles and Practice, 1st ed., 1990.
- 4. Armarego, W.L.F. Purification of Laboratory Chemicals, 5 ed., Butterworth-Heinemann, 2003.
- 5. Williamson, K.L. **Macroscale and Microscale Organic Experiments**, 3th ed. New York: Houghton Mifflin Company, 1999.
- 6. Merck Index: An Encyclopedia of Chemicals, Drugs, & Biologicals, 14th ed, Whitehouse Station: Merck, 2006.
- 7. Lide, D.R. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 88th ed. Boca Raton: CRC, 2008.
- 8. Crews, P.; Rodríguez, J.; Jaspars, M. **Organic structure analysis**. New York: Oxford University Press, 1998.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular TERMODINÂMICA II

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 5

Carga Horária Total 72 h Noturno 6

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s)
Recomendado (s)
Termodinâmica I

EMENTA

Termodinâmica de misturas. Equilíbrio de fases multicomponente. Equilíbrio químico.

BIBLIOGRAFIA

Básica

- 1. KORETSKY, M. D. Termodinâmica para Engenharia Química. Editora LTC, 2007.
- 2. SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à Termodinâmica para Engenharia Química. Editora LTC, 2007.
- 3. MATSOUKAS, T. Fundamentos de Termodinâmica para Engenharia Química Com Aplicações aos Processos Químicos. Editora LTC, 2016. (disponível no e-books)

- 1. SANDLER, S. I. **Chemical, Biochemical and Engineering Thermodynamics**. John Wiley & Sons, 4th edition, 2006.
- 2. PRAUSNITZ, J.M., LICHTENTHALER, R.N., AZEVEDO, E.G. Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice Hall, 3rd edition, 1999.
- 3. TESTER, J.W.; MODELL, M. Thermodynamics and its Applications. Prentice Hall, 3rd edition, 1996.
- 4. POLING, B.E.; PRAUNITZ, J.M.; O'CONNELL, J.P. **The Properties of Gases and Liquids**. McGrall Hill, 5th edition, 2001.
- 5. DAUBERT, T.E. Chemical Engineering Thermodynamics, McGraw-Hill, 1985.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ANÁLISE INSTRUMENTAL

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 4
Carga Horária Total 72 h Noturno 7

Teórico 36 h Prático 36 h Extensão 0 h

Pré-requisito (s) Química Analítica Geral II

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Análise instrumental: sequência analítica, calibração, interferências, erros e características dos métodos. MÉTODOS ESPECTROANALÍTICOS: espectrometria de absorção molecular no visível e ultravioleta e espectrometria de absorção e emissão atômica.

MÉTODOS ELETROANALÍTICOS: Eletrogravimetria, coulometria e voltametria/polarografia.

TÉCNICAS DE SEPARAÇÃO: Fundamentos de cromatografia, cromatografia líquida de alta eficiência, cromatografia de troca iônica e cromatografia gasosa.

BIBLIOGRAFIA

Básica

- 1. SKOOG, D.A.; HOLLER, F.J.; NIEMAN, T.A **Princípios de Análise Instrumental**, 5a ed., Bookman, São Paulo, 2002.
- 2. Skoog, Douglas A et al. **Fundamentos de química analítica**. [Fundamentals of analytical chemistry]. Tradução de: Marco

Tadeu Grassi. São Paulo: Thomson, 2007.

- 3. HARRIS, D.C., Análise Química Quantitativa LTC Livros Técnicos e Científicos, Rio de Janeiro, 2001.
- 4. LANCAS, F.M., Cromatografia em Fase Gasosa, Acta, São Carlos, 1993.

- 1. Collins, C.H.; Braga, G. L.; Bonato, P.S. **Fundamentos de cromatografia**. Campinas, SP, editora UNICAMP, 2006.
- 2. Willard, H. H; Merritt, L; Dean, J. **Análise instrumental**. 2.ed. Lisboa: Fundação Calouste Gulbenkian, 1974.
- 3. Ewing, Galen W. **Métodos instrumentais de análise química**. [Instrumental methods of chemical analysis]. Tradução de: Aurora Giora Albanese, Joaquim Teodoro de Souza Campos. São Paulo: Edgard Blücher, 1972. v.2.
- 4. RUZICKA, J.; HANSEN, E.H., Flow Injection Analysis, (2a ed.), John Willey, New York, 1988.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FENÔMENOS DE TRANSPORTE III

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 6
Carga Horária Total 72 h Noturno 7

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Fenômenos de Transporte I Obrigatório (s)

Pré-requisito (s) Cálculo IV

Recomendado (s) Fenômenos de Transporte II

EMENTA

Introdução à transferência de massa. Definições de concentrações, velocidades e fluxos. Equações Diferenciais de Transferência de Massa. Modelos de difusão para gases, líquidos e sólidos. Transferência de massa difusiva. Difusão em regime estacionário. Difusão em regime estacionário com reação química. Difusão em regime transiente. Transferência de massa convectiva. Análises exata e aproximada da camada limite de concentração. Analogias entre transferência de quantidade de movimento, calor e massa. Correlações para estimativa do coeficiente convectivo de transferência de massa. Transferência de massa entre fases. Transferência simultânea de calor e massa.

BIBLIOGRAFIA

Básica

- 1. CREMASCO, M.A. *Fundamentos de Transferência de Massa*, Ed. Blucher, 3ª. ed., 2016. ISBN-10: 8521209045; ISBN-13: 978-8521209045. (disponível no e-Books)
- 2. WELTY, J.; WICKS, C.E.; WILSON, R.E.; RORRER, G.L.; FOSTER, D.G. *Fundamentals of Momentum, Heat, and Mass Transfer*. Ed. John Wiley & Sons, 6th. ed., 2014. ISBN-10: 1118947460, ISBN-13: 978-1118947463. (disponível no e-Books)
- 3. INCROPERA, F.P.; DEWITT, D.P.; BERGMAN, T.L.; LAVINE, A.S. *Fundamentos de Transferência de Calor e de Massa*. Editora LTC, 7ª ed., 2014. ISBN-10: 8521625049; ISBN-13: 978-8521625049. (disponível no e-Books)

- 1. ÇENGEL, Y.A.; GHAJAR, A.J. *Transferência de Calor e Massa: Uma abordagem prática*. AMGH, 4ª ed., 2012. ISBN-10: 8580551277; ISBN-13: 978-8580551273. (disponível no e-Books)
- 2. BIRD, R.B.; STEWART, W.E.; LIGHTFOOT, E. N. *Fenômenos de Transporte*. Editora LTC, 2a ed., 2004. ISBN: 8521613938. (disponível no e-Books)
- 3. GEANKOPLIS, C.J. *Mass Transport Phenomena*. Editora Ohio State Univ Bookstore, 1^a Ed., 1984. ISBN: 0960307001.
- 4. MIDDLEMAN, S. *Introduction to Mass and Heat Transfer: Principles of Analysis and Design*. Editora John Wiley & Sons Inc. 1a Ed., 1997. ISBN-13: 9780471111764; ISBN-10: 0471111767.
- 5. CUSSLER, E.L. *Diffusion Mass Transfer in Fluid Systems: Mass Transfer in Fluid Systems*. Cambridge University Press. 3^a Ed., 2009. ISBN-10: 0521871212, ISBN-13: 978-0521871211.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular LABORATÓRIO DE ENGENHARIA QUÍMICA I

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 6
Carga Horária Total 72 h Noturno 7

Teórico 0 h Prático 72 h Extensão 72 h

Pré-requisito (s) Fenômenos de Transporte II

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Realização de experimentos e interpretação de resultados nos módulos de laboratório de Engenharia Química relacionados às Unidades Curriculares de Fenômenos de Transporte.

BIBLIOGRAFIA

Básica

- 1. Roteiros de Laboratório de Engenharia Química, UNIFESP.
- 2. ÇENGEL, Y.A.; CIMBALA, J.M. **Mecânica dos fluidos: fundamentos e aplicações**. São Paulo: McGraw Hill, 2008, ISBN: 8586804584, ISBN-13: 9788586804588.
- 3. FOX, R.W.; McDonald, A.T. Introdução à Mecânica dos Fluidos, Editora LTC, 7ª. Edição, 2010, ISBN: 8521617577, ISBN-13: 9788521617570.
- 4. ÇENGEL, Y.A.; GHAJAR, A.J. **Transferência de Calor e Massa: Uma abordagem prática**. AMGH, 4ª ed., 2012. ISBN-10: 8580551277; ISBN-13: 9788580551273.
- 5. INCROPERA, F.P.; DEWITT, D.P.; BERGMAN, T.L.; LAVINE, A.S. Fundamentos de Transferência de Calor e de Massa. Editora LTC, 7a ed., 2014. ISBN-10: 8521625049; ISBN-13: 9788521625049

- 1. MUNSON, B.R.; YOUNG, D.F.; OKIISHI, T.H. **Fundamentos da Mecânica dos Fluidos**. Tradução da 4a edição americana, São Paulo: Editora Edgard Blücher, 2004 584 p. ISBN-10: 8521203438.
- 2. BIRD, R.B.; STEWART, W.E.; LIGHTFOOT, E.N. **Transport Phenomena**, John Wiley & Sons; 2a Edição Revisada, 2006, ISBN-10: 0470115394, ISBN-13: 9780470115398.
- 3. BEJAN, A. Transferência de Calor. 2a. ed, Edgard Blucher, 2004. ISBN 8521200269.
- 4. SOUSA DIAS, L.R. **Operações que envolvem transferência de calor e massa**. Editora Interciência, 2009. ISBN 8571932123.
- 5. MORAN, M.J. et al. Introdução à engenharia de sistemas térmicos: termodinâmica, mecânica dos fluidos e transferência de calor. LTC, 2005. ISBN 9788521614463.
- 6. SCHMIDT, F.W.; HENDERSON, R.E.; WOLGEMUTH, C.H. Introdução às ciências térmicas: termodinâmica, mecânica dos fluidos e transferência de calor. 2ª. ed, Edgard Blücher, 1996. ISBN 852120082X

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular OPERAÇÕES UNITÁRIAS II

72 h

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 6

Extensão 0 h

Noturno 7 Carga Horária Total 72 h

Teórico

Prático 0 h

Pré-requisito (s) Fenômenos de Transporte II

Obrigatório (s)

Pré-requisito (s)

Recomendado (s)

EMENTA

Trocadores de Calor, Evaporadores, Psicrometria, Secagem e Umidificação.

BIBLIOGRAFIA

Básica

- 1. FOUST, A.S.; WENZEL, L.A.; CLUMP, C.W.; MAUS, L.; ANDERSEN, L.B. Princípios das operações unitárias. 2.ed. Rio de Janeiro: LTC, 1982. 670 p. ISBN 9788521610380.
- 2. MCCABE, W.L.; SMITH, J.C.; HARRIOTT, P. Unit operations of chemical engineering. 7th ed. Boston: McGraw-Hill, 2005. 1140 p. (McGraw-Hill chemical engineering series). ISBN 0071247106
- 3. GEANKOPLIS, C.J. Transport processes and separation process principles: (includes unit operations). 4th ed. Upper Saddle River: Prentice Hall Professional Technical Reference, 2003. 1026 p. ISBN 013101367X.

- 1. AZEVEDO, E; ALVES, E. M. Engenharia de Processos de Separação. 3.ed. Lisboa: 2017. IST Press, 824 p. ISBN 9789728469801.
- 2. BLACKADDER, D.A.; NEDDERMAN, R.M. Manual de operações unitárias: destilação de sistemas binários, extração de solvente, absorção de gases, sistemas de múltiplos componentes, trocadores de calor, secagem, evaporadores, filtragem. [s.L.]: Hemus, 2004. 276 p. ISBN 8528905217.
- 3. COSTA, E. C. Secagem industrial. São Paulo: Blücher, 2007. 177 p. ISBN 978852124176.
- 4. NÝVLT, J.; HOSTOMSKÝ, J.; GIULIETTI, M. Cristalização. São Carlos: Editora da UFSCar, 2001. 160 p. ISBN 8585173637.
- 5. CENGEL, Y.A.; GHAJAR, A.J. Transferência de Calor e Massa: Uma abordagem prática, 4ª. ed. McGraw-Hill, 2012. 906 p. ISBN 9788580551273

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular REATORES QUÍMICOS I

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 6
ria Total 72 h Noturno 7

Carga Horária Total 72 h Noturno
Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Balanço de Massa e Energia

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Cinética das reações homogêneas. Introdução ao projeto de reatores. Classificação dos reatores. Reatores químicos ideais. Comparação dimensional de reatores. Sistemas de reatores. Partida de um CSTR. Reator de leito fixo. Sistemas com múltiplas reações químicas. Reatores ideais não isotérmicos.

BIBLIOGRAFIA

Básica

- 1. FOGLER, H. S. **Elementos de Engenharia das Reações Químicas**. 4ª edição, Editora LTC, 2009. ISBN: 9788521617167.
- 2. FOGLER, H. S. **Cálculo de Reatores: O Essencial da Engenharia das Reações Químicas**. 1ª Edição. Editora LTC, 2014. ISBN 9788521626381. (Também disponível no formato Ebook).
- 3. LEVENSPIEL, O. **Engenharia das Reações Químicas**. 3ª edição, Editora Edgard Blücher, 2000. ISBN: 9788521202752.
- 4. FROMENT, G. F.; BISCHOFF, K. B. DE WILDE, J. **Chemical Reactor Analysis and Design**. 3ª edição, Editora John Wiley & Sons, 2010. ISBN: 9780470565414.

Complementar

1. FOGLER, H. S. **Elements of Chemical Reaction Engineering**. 5ª edição. Editora Prentice Hall, 2016. ISBN: 9780133887518.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ADMINISTRAÇÃO

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 5

Carga Horária Total 72 h Noturno 8

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s)
Recomendado (s)

Estatística

EMENTA

Teoria geral da administração com suas abordagens e correntes filosóficas. Conceitos e técnicas de administração geral e industrial. Compreensão das metodologias utilizadas para os estudos de Administração. Funções da administração. As organizações. Controle administrativo e de projetos. Administração da produção. Gestão ambiental empresarial. Sustentabilidade empresarial. Educação em direitos humanos.

BIBLIOGRAFIA

Básica

- 1. CHIAVENATO, Idalberto. Fundamentos de administração: os pilares da gestão no planejamento, organização, direção e controle das organizações para incrementar competitividade e sustentabilidade. 2. São Paulo Atlas 2021 1 recurso online ISBN 9788597027549 (disponível em e-book);
- 2. MARTINS, Petrônio G. e LAUGENI, Fernando P. **Administração da Produção**. São Paulo: Saraiva, 2a Edição, 2005. ISBN: 8502618350 (disponível em e-book);
- 3. BARBIEIRI, José Carlos. **Gestão Ambiental Empresarial**. São Paulo: Saraiva, 3ª Edição, 2011. ISBN: 8502141651 (disponível em e-book).

- 1. KEELING, Ralph. **Gestão de Projetos**. São Paulo: Saraiva, 2002. ISBN: 8502036157 (disponível em e-book);
- 2. RIBEIRO, Antonio de Lima. **Teorias da Administração**. São Paulo: Saraiva, 2a Edição, 2009. ISBN: 9788502635388 (disponível em e-book);
- 3. CHIAVENATO, Idalberto. **Administração de Materiais**. Editora Elsevier-Campus, 2005. ISBN: 8535218734 (disponível em e-book);
- 4. LUSSIER, R.N.; REIS, A.C.F.; FERREIRA, A.A. **Fundamentos de Administração**. São Paulo: Cengage Learnig, 2010. ISBN: 8522107106 (disponível em e-book);
- 5. HITT, M.A.; IRELAND, D.R. HOSKISSON, R.E. **Administração Estratégica**. São Paulo: Cengage Learnig, 2ª Edição, 2007. ISBN: 8522105200 (disponível em e-book).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular FUNDAMENTOS DE BIOQUÍMICA E BIOLOGIA CELULAR

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 7
Carga Horária Total 72 h Noturno 8

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Jungalono (S)

Não há

Pré-requisito (s)

Recomendado (s)

EMENTA

Estrutura e função celular, propriedades das células procarióticas e eucarióticas. Características gerais, estrutura e funções biológicas de biomoléculas: aminoácidos, proteínas, lipídios e carboidratos. Água em sistemas biológicos: estrutura, interações, tampão e reações ácido-base. Mecanismos de ação enzimática. Breve introdução ao metabolismo dos carboidratos. Glicólise, Ciclo de Krebs e Cadeia de transporte de elétrons. Estrutura do DNA e RNA, replicação, transcrição e tradução. Sinalização, divisão, ciclo e morte celular.

BIBLIOGRAFIA

Básica

- 1. ALBERTS, B.; JOHNSON, A.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WALTER, P. **Biologia Molecular da Célula**. 6ª edição, Editora Artmed , 2017. ISBN: 978-85-8271-423-2. (disponível no e-books)
- 2. ALBERTS, B. **Fundamentos da Biologia Celular**. 4ª edição, Ed. Artmed, 2017. ISBN: 978-85-8271-406-5. (disponível no e-books)
- 3. NELSON, D.L.; COX M.M. **Princípios de Bioquímica Lehninger**. Editora. Artmed, Editora. Artmed, 7a edição, 2019. ISBN: 978-858271-534-5. (disponível no e-books)
- 4. VOET, D.; VOET, J. Bioquímica. 4ª ed. São Paulo: Ed Artmed, 2013. ISBN: 9788582710043

- 1. GRIFFITHS, A.J. F., WESSLER, S. R., & CARROLL, S. B. et al. **Introdução à Genética**. 11a Edição, Ed. GUANABARA KOOGAN, 2016. ISBN: 978-85-277-2995-6. (disponível no e-books)
- 2. JUNQUEIRA, L.C. U., & CARNEIRO, J. (2012). **Biologia Celular e Molecular**, 9ª edição, Ed. Grupo GEN, 2012. ISBN: 978-85-277-2129-5. (disponível no e-books)
- 3. BERG, J.M.; TYMOCZKO, J.L.; STRYER, L. **Bioquímica**. 9a edição, Ed. Guanabara Koogan, 2021. ISBN: 9788527738224. (disponível no e-books)
- 4. FERRIER, D.R. **Bioquímica Ilustrada**. 7a. Edição, Ed. Artmed, 2019. ISBN 978-85-8271-486-7. (disponível no e-books)
- 5. CAMPBELL, M. K., & FARRELL, S. O. **Bioquímica**. 8ª edição, Cengage Learning Brasil, 2016. ISBN: 978-85-221-2500-5. (disponível no e-books)
- 6. RODWELL, V.W. **Bioquímica Ilustrada de Harper**. 31a Edição, Ed. AMGH, 2021, ISBN 978-65-5804-003-3. (disponível no e-books)
- 7. MARZZOCO, A.; TORRES, B.B. **Bioquímica Básica**. 4a edição, Ed. Guanabara Koogan, 2017. ISBN: 978-85-277-2781-5. (disponível no e-books).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular LABORATÓRIO DE ENGENHARIA QUÍMICA II

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 7
Carga Horária Total 72 h Noturno 8

Teórico 0 h **Prático** 72 h **Extensão** 72 h

Pré-requisito (s) Operações Unitárias II Obrigatório (s)

Pré-requisito (s) (Recomendado (s)

Operações Unitárias I. Recomendado estar cursando ou ter cursado Operações Unitárias III

EMENTA

Realização de experimentos e interpretação de resultados nos módulos de laboratório de Engenharia Química relacionados às Unidades Curriculares de Operações Unitárias.

BIBLIOGRAFIA

Básica

- 1. ÇENGEL, Y.A.; CIMBALA, J.M. **Mecânica dos fluidos: fundamentos e aplicações**. São Paulo: McGraw Hill, 2008, ISBN: 8586804584, ISBN-13: 9788586804588. (disponível no e-Books)
- 2. FOUST, A.S.; WENZEL, L.A.; CLUMP, C.W.; MAUS, L.; ANDERSEN, L.B. **Princípios das operações unitárias**. 2.ed. Rio de Janeiro: LTC, 1982. 670 p. ISBN: 9788521610380. (disponível no e-Books)
- 3. MCCABE, W.L.; SMITH, J.C.; HARRIOTT, P. **Unit operations of chemical engineering**. 7th ed. Boston: McGraw-Hill, 2005. 1140 p. (McGraw-Hill chemical engineering series). ISBN:0071247106.
- 4. SEADER, J.D.; HENLEY, E.J. **Separation process principles**. 2nd ed. Hoboken: John Wiley & Sons, 2006. 756 p. ISBN: 9780471464808.

- 1. CREMASCO, M.A. **Operações unitárias em sistemas particulados e fluidomecânicos**. 2ª edição. São Paulo: Blücher, 2014. 423 p. ISBN: 9788521208556. (disponível no e-Books)
- 2. GEANKOPLIS, C.J. **Transport processes and separation process principles: (includes unit operations).** 4th ed. Upper Saddle River: Prentice Hall Professional Technical Reference, 2003. 1026 p. ISBN: 013101367X.
- 3. BLACKADDER, D.A.; NEDDERMAN, R.M. **Manual de operações unitárias**: destilação de sistemas binários, extração de solvente, absorção de gases, sistemas de múltiplos componentes, trocadores de calor, secagem, evaporadores, filtragem. [s.L.]: Hemus, 2004. 276 p. ISBN: 8528905217.
- 4. MASSARANI, G. **Fluidodinâmica em sistemas particulados**. 2.ed. Rio de Janeiro: E-Papers, 2002. 152 p. ISBN: 8587922327.
- 5. MACINTYRE, A.J. **Bombas e instalações de bombeamento**. 2.ed. rev. Rio de Janeiro: LTC, 1997. 782 p. ISBN: 9788521610861.
- 6. CHAVES, A.P.; PERES, A.E.C. **Britagem, peneiramento e moagem.** 5. ed. rev. e ampl. São Paulo: Oficina de Livros, 2012. 324 p. (Teoria e prática do tratamento de minérios; v. 3). ISBN: 9788579750618.
- 7. JOAQUIM JUNIOR, C.F. **Agitação e mistura na indústria**. Rio de Janeiro: LTC, 2007. 222 p. ISBN: 9788521615712.
- 8. TADINI, C.C. et al. **Operações Unitárias na Indústria de Alimentos**, vol. 1 e 2, 1ª ed. Rio de Janeiro: LTC, 2018. ISBN 978-85-216-3033-3. (disponível no e-Books)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

7

Unidade Curricular OPERAÇÕES UNITÁRIAS III

72 h

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral

Extensão 0 h

Carga Horária Total 72 h Noturno 8

Prático 0 h

Pré-requisito (s) Fenômenos de Transporte III **Obrigatório (s)**

Pré-requisito (s)
Recomendado (s)
Termodinâmica II

Teórico

EMENTA

Equilíbrio líquido-vapor. Separação instantânea (*flash*). Destilação binária em coluna. Destilação em batelada. Métodos aproximados de cálculo para destilação multicomponente. Absorção e desabsorção. Extração líquido-líquido e sólido-líquido. Adsorção e Processos de Separação por Membranas.

BIBLIOGRAFIA

Básica

- 1. FOUST, A.S.; WENZEL, L.A.; CLUMP, C.W.; MAUS, L.; ANDERSEN, L.B. **Princípios das Operações Unitárias**. 2a Edição. Editora: LTC, 1982. ISBN: 9788521610380.
- 2. MCCABE, W.L.; SMITH, J.C.; HARRIOTT, P. **Unit Operations of Chemical Engineering**. 7a Edição. Editora: McGraw-Hill, 2004. ISBN: 0071247106.
- 3. GEANKOPLIS, C.J. **Transport Processes and Separation Process Principles (includes Unit Operations)**, 4a Edição. Editora: Prentice-Hall International Editions, 2003. ISBN: 013101367X.
- 4. SEADER. J.D.; HENLEY, E.J. **Separation Process Principles**. 2ª Edição. Editora: Wiley International. 2005. ISBN: 978047146480.
- 5. PERRY, R.H.; GREEN, D.W. **Perry's Chemical Engineers' Handbook**. 8ª Edição. Editora: McGraw Hill, 2007. ISBN-10: 0071422943

- 1. BENITEZ, J. **Principles and modern applications of mass transfer operations**. 2a Ed. John & Wiley Sons. ISBN: 9780470181782.
- 2. WANKAT, P.C. **Separation process engineering: includes mass transfer analysis**. 3rd ed. Prentice Hall, 2012. ISBN: 9780131382275.
- 3. AZEVEDO, E.G.; ALVES, A.M. **Engenharia de Processos de Separação**. IST Press, 2ª Ed., 2013. ISBN-10: 9728469802
- 4. DUTTA, B.K. **Principles of Mass Transfer and Separation Process**. Prentice-Hall of India, 2007. ISBN: 8120329902.
- 5. RICCI, F.; THEODORE, L. **Mass Transfer Operations for the Practicing Engineer**. John Wiley-AlChE; 1a ed, 2010. ISBN: 0470577584.
- 6. HINES, A.; MADOXX, R.N. **Mass Transfer: Fundamentals and Applications**. Prentice Hall; 1a ed, 1984. ISBN: 0135596092.
- 7. TERRON, L. R. **Operações Unitárias para Químicos**, Farmacêuticos e Engenheiros. 1ª Edição. Editora LTC, 2012. ISBN 139788521621744 (**disponível no e-Books**)
- 8. CREMASCO, M.A. Fundamentos de Transferência de Massa, Ed. Blucher, 3ª. ed., 2016. ISBN-10: 8521209045; ISBN-13: 978-8521209045. (disponível no e-Books)
- 9. WELTY, J.; WICKS, C.E.; WILSON, R.E.; RORRER, G.L.; FOSTER, D.G. Fundamentals of Momentum, Heat, and Mass Transfer. Ed. John Wiley & Sons, 6th. ed., 2014. ISBN-10: 1118947460, ISBN-13: 978-1118947463. (disponível no e-Books)

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Unidade Curricular REATORES QUÍMICOS II

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 7

Carga Horária Total 72 h Noturno 8
Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Reatores Químicos I

Recomendado (s) Fenômenos de Transporte III

EMENTA

Catálise e reações heterogêneas catalíticas. Mecanismo e cinética das reações catalíticas. Determinação da etapa limitante em uma reação química heterogênea. Projeto de um reator catalítico. Desativação de catalisadores. Efeitos da difusão externa sobre reações heterogêneas. Difusão e reação em catalisadores porosos. Tipos de reatores catalíticos. Distribuição de tempos de residência para reatores químicos. Modelagem para reatores não ideais.

BIBLIOGRAFIA

Básica

- 1. FOGLER, H.S. **Elementos de Engenharia das Reações Químicas**. 4ª Edição, Editora LTC, 2009. ISBN: 9788521617167.
- 2. LEVENSPIEL, O. **Engenharia das Reações Químicas**. 3a Edição, Editora Edgard Blucher, 2000. ISBN: 852120275X.
- 3. ROBERTS, G.W. Reações Químicas e Reatores Químicos. Editora LTC, 2010. ISBN: 9788521617334.

- 1. FELDER, R.M.; ROUSSEAU, R.W. **Princípios Elementares dos Processos Químicos**. Editora: LTC, 3ª Edição, 2005, ISBN: 9788521614296.
- 2. FROMENT, G.F.; BISCHOFF, K.B. Chemical Reactor Analysis and Design, 3ª. Edição, Editora John Wiley & Sons 2010. ISBN-10: 0470565411, ISBN-13: 9780470565414.
- 3. HILL, C.G. **An Introduction to Chemical Engineering Kinetics & Reactor Design**. HOBOKEN: John Wiley & Sons, 1977. 594p. ISBN: 0471396095.
- 4. NAUMAN, E.B. Chemical Reactor Design, Optimization and Scaleup. Editora McGraw-Hill, 2002. ISBN: 007139558X.
- 5. COKER, A.K. **Modeling of Chemical Kinetics and Reactor Design**. Editora Gulf Professional Publishing, 2001. ISBN: 0884154815.
- 6. FOGLER, H.S. **Cálculo de Reatores O essencial da Engenharia das Reações Químicas**. 4ª Edição, Editora LTC, 2014. ISBN: 9788521626374 (e-book).
- 7. FELDER, R.M.; ROUSSEAU, R.W.; BULLARD, Ĺ.G. **Princípios Elementares dos Processos Químicos**. Editora: LTC, 4ª Edição, 2018, ISBN: 9788521634928.
- 8. ANCHEYTA, J. Modelagem e Simulação de Reatores Catalíticos para o Refino de Petróleo. 1ª Edição, Editora LTC, 2015. ISBN: 9788521627463 (e-book).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ECONOMIA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 6

Carga Horária Total 72 h Noturno 9

Teórico 72 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s) Recomendado (s)

EMENTA

Teoria microeconômica (demanda, oferta e equilíbrio de mercado) e formação de preços. Macroeconomia e indicadores econômicos. Princípios de matemática financeira. Análise de alternativas de investimentos. Análise de viabilidade econômica de processos químicos. Custos ambientais.

BIBLIOGRAFIA

Básica

- 1. PINHO, D.B.; VASCONCELLOS, M.A.S. **Manual de Economia**. São Paulo: Saraiva, 6a edição (2011). ISBN: 9788502135079.
- 2. HIRSCHFELD, H. **Engenharia econômica e análise de custos**. São Paulo: Atlas, 7ª edição (2001) ISBN: 8522426627.
- 3. MOURA, L.A. **Economia Ambiental: Gestão de Custos e Investimentos**. Editora Juarez de Oliveira, 6ª edição (2006). ISBN: 8574536016.

- 1. TORRES, O.F.F.F. **Fundamentos da Engenharia Econômica e da Análise Econômica de Projetos**. São Paulo: Thomson Learning, 2006. ISBN: 852210522.
- 2. MANKIW, N.G. Introdução à Economia. São Paulo. Thomson Pioneira, 8ª edição, 2020. ISBN:8522111863.
- 3. THOMAS, J.M.; CALLAN, S.J. **Economia Ambiental: aplicações, políticas e teoria**. São Paulo: Cengage Learning, 2009. ISBN: 8522106525.
- 4. CASAROTTO FILHO, N.; KOPITTKE, B.H. **Análise de Investimentos: matemática financeira, engenharia econômica, tomada de decisão, estratégia empresarial**. São Paulo: Atlas. 11ª edição, 2010. ISBN: 852245789.
- 5. VASCONCELLOS, M.A.S.; GARCIA, M.E. **Fundamentos de Economia**. 6ª edição. São Paulo: Saraiva, 2019. ISBN: 8502067672.
- 6. CAMIOFFSKI, R. **Análise de investimentos e viabilidade financeira das empresas**. 1ª edição. São Paulo, SP: Atlas, 2014

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ENGENHARIA BIOQUÍMICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 8 rária Total 54 h Noturno 9

Carga Horária Total 54 h

Teórico 54 h

Prático 0 h

Extensão 0 h

Pré-requisito (s) Fundamentos de Bioquímica e Biologia Celular

Obrigatório (s)

Pré-requisito (s)
Recomendado (s)
Reatores Químicos I

EMENTA

Microbiologia geral. Enzimas e cinética das reações enzimáticas. Cinética microbiana. Reatores bioquímicos/biorreatores. Agitação e aeração em biorreatores. Ampliação de escala em biorreatores. Esterilização. Instrumentação de processos biotecnológicos. Aplicações industriais de bioprocessos. Purificação de produtos biotecnológicos.

BIBLIOGRAFIA

Básica

- 1. BORZANI, W.; SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E. **Biotecnologia Industrial Fundamentos**, Vol. 1, Editora: Edgard Blucher, ISBN-10: 8521202784. (disponível no e-Books)
- 2. SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E.; BORZANI, W. **Biotecnologia Industrial Engenharia Bioquímica**, Vol. 2, Editora: Edgard Blucher, ISBN-10: 8521202792. (disponível no e-Books)
- 3. SHULER, M.L.; KARGI, F. **Bioprocess Engineering: Basic Concepts**, 2ª edição, Editora: Prentice Hall, ISBN-10: 0130819085, ISBN-13: 9780130819086.
- 4. SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E.; BORZANI, W. **Biotecnologia Industrial Processos Fermentativos e Enzimáticos**, Vol. 3, Editora: Edgard Blucher, ISBN-10: 8521202806.

- 1. BAILEY, J.E.; OLLIS, D.F. **Biochemical Engineering Fundamentals**, 2ª edição, Editora: McGraw-Hill, ISBN: 9780070666016.
- 2. CORTEZ, L.A.B.; LORA, E.E.S.; GÓMEZ, E.O. **Biomassa para Energia**, Editora: UNICAMP, 2008, ISBN: 9788526807839.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular MODELAGEM E ANÁLISE DE SISTEMAS

Curso ENGENHARIA QUÍMICA

Termo de oferecimento Integral

Carga Horária Total 72 h

Noturno

6

9

Teórico 60 h

Prático 12 h

Extensão 0 h

Pré-requisito (s) Cálculo Numérico Obrigatório (s)

Pré-requisito (s) Recomendado (s)

Cálculo III; Fenômenos de Transporte II

EMENTA

Introdução aos sistemas algébricos e diferenciais, baseada em aplicações em Engenharia Química. Modelos empíricos e fenomenológicos, relações constitutivas. Balanços dinâmicos de massa e de energia e adimensionalização de modelos. Sistemas algébricos lineares: existência de solução, aplicações de métodos envolvendo fatoração LU, fatoração QR e decomposição em valores singulares. Sistemas de equações algébricas não lineares: método de Newton-Raphson, multiplicidade de soluções. Resolução numérica de sistemas de equações diferenciais ordinárias e parciais. Método das diferenças finitas, estabilidade e rigidez numérica. Resolução numérica de sistemas de equações algébrico-diferenciais.

BIBLIOGRAFIA

Básica

- 1. BEERS, K.J. **Numerical Methods for Chemical Engineering: Applications in Matlab.** New York, Cambridge University Press, 2007. 474p. (disponível na Internet)
- 2. BURDEN, R.L.; FAIRES, J.D.; BURDEN, A.M. **Análise numérica.** 3. ed. São Paulo, SP: Cengage Learning, 2015. 879 p. ISBN 978-85-2212-341-4. (disponível no e-Books)
- 3. CHAPRA, S.C.; CANALE, R.P. **Métodos Numéricos para Engenharia.** 7.ed. São Paulo: McGraw-Hill, 2016. 863p. ISBN 978-85-8055-569-1. (disponível no e-Books)
- 4. PINTO, J.C.; LAGE, P.L.C. **Métodos Numéricos em Problemas de Engenharia Química.** Rio de Janeiro: E-papers. Serviços Editoriais Ltda, 2001. 316p. (disponível na Internet)
- 5. TOSUN, I. **Modelling in Transport Phenomena a Conceptual Approach.** Elsevier, Amsterdam. The Netherlands, 2002. 590p. ISBN: 9780080511856.

- 1. FRANCO, N.B. Cálculo Numérico. São Paulo: Pearson Prentice Hall, 2006. 520p. ISBN 8576050870.
- 2. GARCIA, C. **Modelagem e Simulação de Processos Industriais e de Sistemas Eletromecânicos.** 2. ed. Edusp Editora da Universidade de São Paulo, 2013. 688p. ISBN 8531409042.
- 3. KREYSZIG, E. et al. **Matemática Superior para Engenharia.** 10.ed. LTC, v.1, 2019. 391p. ISBN 978-0-470-45836-5. (disponível no e-Books)
- 4. PATWARDHAN, S.C. Lecture Notes for Computational Methods in Chemical Engineering. Department of Chemical Engineering, Indian Institute of Technology, Bombay. Mumbai 400076, India. 243p. (disponível na Internet) 5. PERRY, R.H.; GREEN, D.W. Perry's Chemical Engineers' Handbook. McGraw-Hill Companies, 2008. 2735p.
- 6. CHAPRA, S.C. **Métodos numéricos aplicados com Matlab**® **para engenheiros e cientistas.** 3. ed. Porto Alegre: AMGH Editora Ltda, 2013. 655p. ISBN 978-85-8055-177-8. (disponível no e-Books)
- 7. BRASIL, R. M. L. R. F; BALTHAZAR, J. M.; GÓIS, W. **Métodos numéricos e computacionais na prática de engenharias e ciências.** São Paulo: Blücher, 2015. 185p. (disponível no e-Books)
- 8. CAMPOS FILHO, F.F. **Algoritmos Numéricos uma abordagem moderna de Cálculo Numérico.** 3.ed. Rio de Janeiro: LTC Livros Técnicos e Científicos Ltda, 2018. 478p. ISBN 978-85-216-3564-2. (disponível no e-Books)
- 9. VARGAS, J.V.C.; ARAKI, L.K. **Cálculo Numérico Aplicado.** São Paulo: Editora Manole Ltda, 2017. ISBN 978-85-204-5433-6. 668p. (disponível no e-Books)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular PROCESSOS QUÍMICOS INDUSTRIAIS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 8
Carga Horária Total 36 h Noturno 9

Teórico 36 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s)Recomendado (s)

Balanço de Massa e Energia

EMENTA

Estudo geral dos processos químicos inorgânicos e orgânicos. Conceituação e análise de processos químicos.

BIBLIOGRAFIA

Básica

- 1. SHREVE, R.N.; BRINK JR., J.A. **Indústrias de Processos Químicos**, Editora Guanabara Koogan, 4ª Edição, 1997, ISBN: 978-85-277-1419-8.
- 2. HIMMELBLAU, D.M.; RIGGS, J.B. **Engenharia Química Princípios e Cálculos**, Editora LTC, 8ª Edição, 2006, ISBN: 978-85-216-1502-6. (+)
- 3. TURTON, R.; BAILIE, R.C.; WHITING, W.B.; SHAEIWITZ, J.A. **Analysis, Synthesis, and Design of Chemical Processes**. Editora Prentice-Hall, 3ª Edição, 2008, ISBN-10:0135129664, ISBN-13:9780135129661.

- 1. FOUST, A.S.; WENZEL, L.A.; CLUMP, C.W.; MAUS, L.; ANDERSEN, L.B. **Princípios das Operações Unitárias**, Editora LTC, 2ª Edição, 1982, ISBN: 978-85-216-1038-0.
- 2. FELDER, R.M.; ROUSSEAU, R.W. **Princípios Elementares de Processos Químicos**. Editora LTC, 4ª Edição, 2005, ISBN: 85-2161429-2. (+)
- 3. HILSDORF, J.W.; BARROS, N.D. TASSINARI; C. A.; COSTA, I. **Química tecnológica**. Editora Cengage Learning, 2003, ISBN 8522103526; ISBN-13: 9788522103522.
- 4. COUPER, J.R.; PENNEY, W.R.; FAIR, J.R.; WALAS, S.M. **Chemical Process Equipment**. 3rd. ed. Butterworth-Heinemann, 2012, ISBN: 012396959X; ISBN-13: 978-0123969590.
- 5. Kirk-Othmer Encyclopedia of Chemical Technology, 27 volumes. 5th. ed. Wiley-Blackwell, 2007, ISBN: 0471484962, ISBN-13: 978-0471484967.
- 6. PERRY, R.H.; GREEN, D.W. **Perry's chemical engineers' handbook**, 8th ed. McGraw-Hill, 2007. ISBN 9780071422949.
- (+) Referências disponíveis na biblioteca virtual.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

7

10

Unidade Curricular ELETROQUÍMICA APLICADA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral
Carga Horária Total 54 h Noturno

Teórico 54 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s)
Recomendado (s)
Reatores Químicos I

EMENTA

Reações eletroquímicas. Potencial do eletrodo. Dupla camada elétrica. Fundamentos da cinética e dos mecanismos das reações de eletrodo. Eletrólise. Reatores eletroquímicos: tipos e cinética. Principais processos eletroquímicos industriais. Formas e classificação da corrosão. Corrosão na indústria química e petroquímica. Métodos de combate e inibição da corrosão.

BIBLIOGRAFIA

Básica

- 1. GENTIL, V. Corrosão. Editora LTC. 2006. ISBN: 8521618042. (disponível no formato e-book)
- 2. STEPHAN WOLYNEC. **Técnicas Eletroquímicas em Corrosão**. Editora da USP.2003. ISBN: 8531407494, 9788531407499.
- 3. PLETCHER, D. Industrial electrochemistry. Chapman and Hall, 1982. ISBN: 0412304104.

- 1. HOLZE, R. Experimental Electrochemistry: A Laboratory Textbook. Wiley-VCH. 2007. ISBN: 9783527310982.
- SKOOG, WEST, HOLLER e CROUCH. Fundamentos de Química Analítica 8ª Edição Norte America Editora Cengage Learning, 2008. ISBN-10: 8522104360. ISBN-13: 9788522104369 (disponível no formato e-book).
- 3. Geoffrey Prentice. Electrochemical Engineering Principles Editora Prentice Hall, 1991.
- 4. GOODRIDGE, F.; SCOTT, K. Electrochemical Process Engineering: A Guide to the Design of Electrolytic Plant. Plenum Press, New York, 1995. ISBN: 9780306447945.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ELETROTÉCNICA APLICADA À ENGENHARIA QUÍMICA

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 5

Carga Horária Total 36 h Noturno 10

Teórico 36 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Recomendado (s)

EMENTA

Reatância capacitiva e indutiva, circuitos capacitivos e indutivos, correção do fator de potência, conceito de grandezas não senoidais, circuitos elétricos com correntes alternadas enroladas sobre o ferro, Circuitos Corrente Alternada, Transformadores, Sistemas trifásicos e potência, medidas elétricas e magnéticas nos sistemas elétricos, Circuitos de Controle de Acionamento de Bombas e Motores com relés.

BIBLIOGRAFIA

Básica

- 1. FITZGERALD, A.E.; KINGSLEY Jr., C.; UMANS, S.D. **Máquinas Elétricas**. Editora AMGH, 7^a. Edição, 728 p, 2014, ISBN: 978581553741.
- 2. PETRUZELLA, F.D. Eletrotécnica II, 446p 1ª edição 2013, Editora AMGH;, ISBN: 8580552885.
- 3. CHAPMAN, S.J. **Electric Machinery Fundamentals**, 5^a edition. Editor Mc Graw Hill, 680p, 2012, ISBN: 9780073529547.
- 4. NISKIER, J., MACINTYRE, A. J. **Instalações Elétricas**, 6ª edição. Ed. LTC, Rio de Janeiro, 2013, ISBN: 9788521622130
- 5. ABNT NBR 5410:2004, Instalações Elétricas de Baixa Tensão, 209 páginas, Rio de Janeiro, Brasil.

- 1. GUSSOW, M. Eletricidade Básica. Editora Bookman. 2ª. Edição, 2009, 571p, ISBN: 9788577802364.
- 2. Fowler, Richard, **Fundamentos de Eletricidade**, 7ª. Edição, Ed. AMGH, 2013, 256p, e-book, ISBN: 9788580551402.
- 3. FRANCHI, C.M.; CAMARGO, V.L.A. **Controladores Lógicos Programáveis-Sistemas Discretos**, Editora Érica, 2ª Edição, 352p, 2013, ISBN: 9788536501994.
- 4. ORSINI, L.Q.; CONSONNI, D. **Curso de Circuitos Elétricos**, vol. 1. Editora Edgar Blucher, 304p, 2002, 2a edição, ISBN: 852120308
- 5. BIM, E. **Máquinas Elétricas e Acionamento**. Editora Campus / Elsevier, 2ª.Edição,568 p., 2012, ISBN: 8535259236.
- 6. IRWIN, J.D.; NELMS, R.M. **Análise Básica de Circuitos para Engenharia**. LTC, 10^a.edição, 2013, 700p, ISBN: 8521621809.
- 7. Alexander, C. K., Sadiku, M., **Fundamentos de Circuitos Elétricos**, Editora AMGH; 5ª edição, 2013, 896 p., ISBN: 8580551722.
- 8. BEGA, E.A.; et. al. **Instrumentação Industrial**. Editora Interciência, 3ª. Edição, 668p. 2011. ISBN: 9788571932456.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade

ESTÁGIO SUPERVISIONADO

Curricular

Curso **ENGENHARIA QUÍMICA** Termo de oferecimento Integral

não vinculada a

um termo

específico

não

Carga Horária

Total

160 h **Noturno**

> vinculada a um termo

específico

Teórico

0 h

Prático 160 h Extensão

0 h

Pré-requisito (s) Balanço de massa e energia

Obrigatório (s) Operações unitárias I

Análise instrumental

O acadêmico deverá obrigatoriamente inscrever-se em UCs que perfaçam pelo menos 50%

(cinquenta por cento) da carga horária semanal prevista para o período letivo.

Pré-requisito (s)

Não há Recomendado (s)

EMENTA

Objetivos e normas do Estágio Supervisionado Obrigatório baseados no Regulamento Geral. Procedimentos para a redação do relatório de estágio. As atividades de estágio serão concluídas com a apresentação de um relatório.

BIBLIOGRAFIA

Básica

- 1. Regulamento Geral de Estágio do Curso de Engenharia Química da UNIFESP.
- 2. Regimento ProGrad.

Complementar

1. Lei Federal Nº 11.788 (Lei de Estágio).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular PRINCÍPIOS DE AUTOMAÇÃO E INSTRUMENTAÇÃO

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 5
Carga Horária Total 36 h Noturno 10

Teórico 28 h Prático 8 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s) Recomendado (s)

EMENTA

Diagrama de instrumentação. Instrumentação industrial: medidas de pressão, temperatura, vazão, nível e densidade. Transmissores pneumáticos e eletrônicos. Atuadores industriais. Controladores lógicos programáveis. Sistemas supervisórios.

BIBLIOGRAFIA

Básica

- 1. BEGA, E.A.; et. al. **Instrumentação Industrial**. Editora Interciência, 3ª. Edição, 668p. 2011. ISBN: 9788571932456.
- 2. DUNN, W.C. Fundamentos de Instrumentação Industrial e Controle de Processos, 344p, ed. Bookman, 2013, ISBN: 9788582600917.
- 3. Lipták, B.G.(ed). Instrument Engineers Handbook. CRC Press. 2016. 5th. Edition, ISBN: 9781466559325
- 4. Watton, John, **Fundamentos de Controle em Sistemas Fluidomecânicos**, Editora LTC, 1ª. Edição, 2012, 428 p., ISBN: 852162025X.
- 5. FRANCHI, C.M.; CAMARGO, V.L.A. **Controladores Lógicos Programáveis Sistemas Discretos**, Editora Érica, 2ª Edição, 352p, 2013, ISBN: 9788536501994.
- 6. IDEOTA, I.V.; CAPUANO, F.G. **Elementos de Eletrônica Digital**, Editora Érica, 37^a. Edição, 526p. 2006, ISBN: 8571940193.

- 1. FITZGERALD, A.E.; KINGSLEY Jr., C.; UMANS, S.D. **Máquinas Elétricas**. Editora AMGH, 7^a. Edição, 728 p, 2014, ISBN: 978581553741.
- 2. CHAPMAN, S.J. **Electric Machinery Fundamentals**, 5^a edition. Editor Mc Graw Hill, 680p, 2012, ISBN: 9780073529547.
- 3. BIM, E. **Máquinas Elétricas e Acionamento**. Editora Campus / Elsevier, 2ª.Edição,568 p., 2012, ISBN: 8535259236.
- 4. IRWIN, J.D.; NELMS, R.M. **Análise Básica de Circuitos para Engenharia**. LTC, 10ª.edição, 2013, 700p, ISBN: 8521621809.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular PROCESSOS PARA TRATAMENTO DE EFLUENTES

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 9
Carga Horária Total 72 h Noturno 10

Teórico 72 h **Prático** 0 h **Extensão** 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s) Engenharia Bioquímica Recomendado (s) Reatores Químicos I

EMENTA

Poluição. Ciclos biogeoquímicos e ética ambiental. Parâmetros de qualidade do ar e águas residuárias. Legislação para limites de lançamento de efluentes líquidos. Legislação para limites de emissão de efluentes gasosos. Autodepuração de efluentes líquidos. Tratamento de efluentes domésticos e industriais por processos físico-químicos e processos biológicos. Projeto de estações de tratamento de efluentes líquidos industriais. Dispersão de poluentes de fontes fixas na atmosfera. Projetos de emissão de poluentes de fontes fixas. Equipamentos de controle da poluição do ar, gases e material particulado.

BIBLIOGRAFIA

Básica

- 1. PEIRCE, J.J., WEINER, R.F., VESILIND, P.A., **Environmental Pollution and Control**. 4^a Edition, Butterworth-Heinemann.
- 2. NUNES, J.A. **Tratamento Físico-Químico de Águas Residuárias Industriais**, 6a ed. Revisada, Info-Graphics Gráfica & Editora, 2008.
- 3. METCALF & EDDY, **Wastewater Enginnering Treatment and Reuse**. 4a Edição, McGraw-Hill International Edition. 2004. ISBN: 0-07-041878-0.
- 4. NUNES, J.A. **Tratamento Biológico de Águas Residuárias**, 3a ed. Revisada, Info-Graphics Gráfica & Editora, 2008.

- 1. CAVALCANTI, J.E.W.A. **Manual de Tratamento de Efluentes Industriais**. Engenho Editora Técnica, 2009. ISBN: 9788588006058.
- 2. SELL, N.J. Industrial Pollution Control Issues and Tecniques. 2nd Edition.
- 3. COOPER, C. D; ALLEY, F. C. **Air Pollution Control A Design Approach**. 4ª Edition. Waveland Pr. Inc. 2011.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular SIMULAÇÃO DE PROCESSOS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 7 10

Carga Horária Total 72 h Noturno

Teórico 0 h Prático 72 h Extensão 0 h

Pré-requisito (s) Modelagem e Análise de Sistemas

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Arquitetura de simuladores de processos e técnicas de simulação. Técnicas numéricas de simulação. Pacotes de propriedades termodinâmicas e definição de correntes materiais. Simulação de processos envolvendo os principais sistemas da indústria química: dispositivos de fluxo, misturadores e divisores de correntes, tanques de armazenamento, trocadores de calor, reatores químicos, sistemas de separação. Simulação de processos. Simulação de processos auxiliada por computador.

BIBLIOGRAFIA

Básica

- 1. BRAUNSCHWEIG, B.; GANI, R. Software architectures and tools for computer aided process engineering, Volume 11 in Computer Aided Chemical Engineering. 1 ed. Elsevier, 2002. 712 p. ISBN 9780080541365. (disponível no e-Books / periódicos capes - base de dados: ScienceDirect)
- 2. DIMIAN, A. C. Integrated design and simulation of chemical processes, Volume 13 in Computer Aided Chemical Engineering. 1 ed. Amsterdam: Elsevier, 2003. 714 p. ISBN 9780080534800. (disponível no e-Books / periódicos capes – base de dados: ScienceDirect)
- 3. DIMIAN, A. C; BILDEA, C. S. Chemical process design: computer-aided case studies. Weinheim: Wiley-VCH, 2008. 508 p. ISBN 9783527314034.
- 4. FOO, D. C. Y.; Chemmangattuvalappil, N.; Ng, D. K. S.; Elyas, R.; Chen, C. L.; Elms, R. D.; Lee, H. Y.; Chien, L.; Chong, S.; Chong, C. H. Chemical Process Simulation. Elsevier, 2017. 464 p. ISBN 978-0-12-803782-9
- 5. HAYDARY, J. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. John Wiley & Sons, 2018. 448 p. ISBN:9781119089117
- 6. SANDLER, S. I. Using Aspen plus in thermodynamics instruction: a step-by-step guide. New Jersey: Wiley, 2015. 343 p. ISBN 9781118996911.

- 1. LUYBEN, W. L. Distillation design and control using Aspen simulation. Hoboken: Wiley-Interscience, 2006. 345 p. ISBN 9780471778882.
- 2. PERLINGEIRO, C. A. G. Engenharia de processos Análise, simulação, otimização e síntese de processos químicos. 2 ed. Brazil: Edgard Blucher, 2018. 198 p. ISBN 9788521213611. (disponível no
- 3. RAMIREZ, W. F. Computational methods in process simulation. 2 ed. Oxford: Butterworth-Heinemann, 1997. 512 p. ISBN 978-0-7506-3541-7. (disponível no e-Books / periódicos capes - base de dados: ScienceDirect)
- 4. VELTEN, K. Mathematical modeling and simulation: introduction for scientists and engineers. Weinheim: Wiley-VCH, 2009. 348 p. ISBN 9783527407583.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular ANÁLISE E CONTROLE DE PROCESSOS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 8
Carga Horária Total 72 h Noturno 11

Teórico 54 h Prático 18 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Cálculo IV

Pré-requisito (s) Modelagem e Análise de Sistemas

Recomendado (s) Princípios de Automação e Instrumentação

Reatores Químicos I

EMENTA

Introdução aos sistemas de controle. Fundamentos básicos de instrumentação e controle de processos químicos: elementos de uma malha de controle por realimentação. Modelos matemáticos de sistemas dinâmicos para a Engenharia Química. Representação em diagrama de blocos. Análise da resposta temporal a diferentes perturbações. Sistemas de controle realimentados. Diagrama e equação característica de sistemas de controle em malha fechada. Comportamento em regime permanente. Análise de estabilidade. Projeto de controladores industriais, controladores clássicos: P. PI e PID. Projeto de malha de controle por realimentação. Controle antecipatório e em cascata.

BIBLIOGRAFIA

Básica

- 1. Stephanopoulos, G. Chemical Process Control An Introduction to theory and practice. Englewood Cliffs, N.J.: Prentice Hall, 1984. ISBN: 9780131286290
- 2. Seborg, D.; Edgar, T.; Mellichamp, D. **Process Dynamics and Control**. 3rd ed. Hoboken, NJ: Wiley, 2010. ISBN: 9780470128671.
- 3. Smith, C. A.; Corrupio, A. **Princípios e Prática do Controle Automático de Processo**. 3ª edição. Grupo GEN, 2008. ISBN: 9788521622567 (disponível no e-Books)
- 4. GARCIA, Claudio. **Controle de processos industriais: Estratégias Convencionais**. São Paulo: Editora Blucher, 2017. ISBN: 9788521211860. (disponível no e-Books)
- 5. ODLOAK, D.; KWONG, W.H. Controle de Processos com Scilab. São Carlos, SP: EdUFSCar, 2019. ISBN: 9786580216253.

- 1. Franchi, C. M. **Controle de Processos Industriais: Princípios e Aplicações**. São Paulo, SP: Editora Saraiva, 2011. ISBN: 9788536518282. (disponível no e-Books)
- 2. Ferraz, R. Controle de Processos Industriais: Modelagem e Simulação com Scilab. São Paulo, SP: Editora Dialética, 2021. ISBN:9786525205557.
- 3. Kwong, W. H. **Introdução ao controle de processos químicos com Matlab**. Volume 1. São Carlos, SP: EdUFSCar, 2012. ISBN: 9788585173920.
- 4. Kwong, W. H. Introdução ao controle de processos químicos com Matlab. Volume 2. São Carlos, SP: EdUFSCar, 2012. ISBN: 9788585173937.
- 5. Marlin, T. E. **Process Control. Designing processes and Control Systems for Dynamic Performance**. 2nd Edition, McGraw-Hill Education, 2015. ISBN-13: 978-0070393622. ISBN-10: 0070393621.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade LABORATÓRIO DE ENGENHARIA QUÍMICA III

Curricular

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 8

Carga Horária 72 h Noturno 11

Total

Teórico 0 h **Prático** 72 h **Extensão** 72 h

Pré-requisito (s) Reatores Químicos II Obrigatório (s)

Pré-requisito (s) Recomendado estar cursando ou ter cursado Análise e Controle de Processos e

Recomendado (s) Engenharia Bioquímica.

EMENTA

Experiências, medidas e interpretação de resultados, nos módulos de laboratório de Engenharia Química relacionados às Unidades Curriculares Reatores Químicos I, Reatores Químicos II, Engenharia Bioquímica e Análise e Controle de Processos.

BIBLIOGRAFIA

Básica

- 1. Roteiros de Laboratório de Engenharia Química. UNIFESP.
- 2. FOGLER, H. Scott. **Elementos de Engenharia das Reações Químicas**. 3ª edição, Editora LTC, 2002. ISBN: 9788521613152.
- 3. LEVENSPIEL, O. **Engenharia das Reações Químicas**. 3ª edição, Editora Edgard Blücher, 2000. ISBN: 852120275X.
- 3. DORF, R.C.; BISHOP, R.H. **Sistemas de Controle Modernos**. 11ª edição, Editora LTC, 2009. ISBN: 8521617143. E-book.
- 4. SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E.; BORZANI, W. **Biotecnologia Industrial -Engenharia Bioquímica**, Vol. 2, Editora: Edgard Blucher, ISBN-10: 8521202792. E-book.
- 5. SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E.; BORZANI, W. **Biotecnologia Industrial** -**Processos Fermentativos e Enzimáticos**, Vol. 3, Editora: Edgard Blucher, ISBN-10: 8521202806. E-book.

- 1. FROMENT, G.F.; BISCHOFF, K.B. **Chemical Reactor Analysis and Design**. 2ª edição, Editora John Wiley & Sons, 1990. ISBN: 9780471510444.
- 2. SHULER, M.L.; KARGI, F. **Bioprocess Engineering: Basic Concepts**, 2ª edição, Editora: Prentice Hall, ISBN-10: 0130819085, ISBN-13: 9780130819086.
- 3. OGATA, K. **Engenharia de Controle Moderno**. 4ª edição, Editora Prentice Hall do Brasil, 2003. ISBN: 8587918230. E-book.
- 4. NISE, N.S. **Engenharia de Sistemas de Controle**. 5ª edição, Editora LTC, 2009. ISBN: 8521617046.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular PROJETO DE PROCESSOS QUÍMICOS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 9
Carga Horária Total 72 h Noturno 11

Teórico 36 h Prático 36 h Extensão 0 h

Pré-requisito (s) Operações Unitárias I Obrigatório (s) Operações Unitárias II

Pré-requisito (s)
Recomendado (s)
Operações Unitárias III

EMENTA

Concepção de processos químicos. Motivações para projetos de indústrias químicas. Estudo de viabilidade técnica. Condições de operação e de projeto. Seleção de materiais de construção. Dimensionamento de equipamentos. Integração energética. Análise de segurança. Estimativa de custos de capital (investimento). Estimativa de e custos operacionais. Análise de fluxo de caixa. Fluxogramas de processo.

BIBLIOGRAFIA

Básica

- 1. TURTON, R.; BAILIE, R.C.; WHITING, W.B.; SHAEIWITZ, J.A. **Analysis, Synthesis, and Design of Chemical Processes**, 4ª Edição, Upper Saddle River, N.J., EUA: Prentice Hall, 2012. ISBN-13 : 978-0132618120
- 2. GREEN, D.W.; PERRY, R.H. **Chemical Engineers' Handbook**, 8ª edição, New York, USA: McGraw Hill, 2007. ISBN 9780071422949.
- 3. NASSER JR., R. Otimização da absorção por fenomenologia e análise estatística. Para as colunas de recuperação de acetona na produção de filter tow. Novas Edições Acadêmicas: Saarbrücken, Deutschland, 2015. ISBN 978-613-0-17230-5.
- 4. PERLINGEIRO, C.A.G. Engenharia de Processos Análise, Simulação, Otimização, e Síntese de Processos Químicos, Editora Blucher, São Paulo, 2005. ISBN 85-21-0368-3.
- 5. TIMMERHAUS, K.D; PETERS, M.S; WEST R.E. **Plant Design and Economics for Chemical Engineers**. 3rd ed, McGraw Hill, 2003. ISBN 9780071240444

- 1. BRANAN, C.R. **Rules of Thumb for Chemical Engineers**, 4ª edição, Gulf Professional Publishing, 2005. ISBN 9780750678568.
- 2. BASUSBACHER, E.; HUNT, R. **Process Plant Layout and Piping Design** Prentice Hall PTR, 1993. ISBN: 9780131386297.
- 3. WOILER, S.; MARTINS, W.F. **Projetos, Planejamento, Elaboração e Análise**, Editora Atlas, 2008. ISBN 8522450331.
- 4. TELLES, P.C.S. **Tubulações Industriais: Projeto, Materiais e Montagem**, 10^a Ed., LTC, 2010. ISBN 978-85-216-1289-6.
- 5. MACINTYRE, C.R. Bombas e Instalações de Bombeamento, LTC, 1997. ISBN 8521610866.
- 6. CONSIDINE, D.M. **Process Instruments and Controls Handbook**, 1^a Ed., McGraw-Hill Book Company, New York, 1957. ISBN 07-012425-6.
- 7. SEIDER, W.D., SEADER, J.D., LEWIN, D.R. **Process Design Principles Synthesis, Analysis and Evaluation**, 1^a Ed., John Wiley & Sons Inc, New York, 1999. ISBN 0-471-24312-.
- 8. SHREVE, R. N. **Chemical Process Industries**, 3ª edição, McGraw-Hill, Kogakusha Co., New York, Tokyo, 1967. ISBN 66-20721.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular SÍNTESE E OTIMIZAÇÃO DE PROCESSOS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 8
Carga Horária Total 72 h Noturno 11

Teórico 54 h **Prático** 18 h **Extensão** 0 h

Pré-requisito (s) Simulação de Processos

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

A natureza combinatória do problema de síntese. Diagrama de blocos preliminar para processos químicos; síntese de processos químicos. Multiplicidade de soluções. Métodos heurísticos e algorítmicos. Decomposição do problema de síntese do processo em sub-problemas interdependentes de síntese dos sistemas de reação, de separação, de integração material e energética: síntese de reação (rotas, viabilidade técnico-econômica preliminar — margem bruta), síntese de sistemas de separação e síntese de redes de trocadores de calor; integração energética. Aspectos essenciais dos problemas de otimização.

BIBLIOGRAFIA

Básica

- 1. BRANAN, C. R. (Ed.). Rules of thumb for chemical engineers: a manual of quick, accurate solutions to everyday process engineering problems. 4th ed. Burlington: Elsevier, 2005. 479 p. ISBN 9780750678568.
- 2. FLETCHER, R. **Practical methods of optimization**. 2nd ed. Chichester; New York: John Wiley & Sons, c1987. 436 p. ISBN 9780471494638.
- 3. KEMP, I. C. Pinch Analysis and Process Integration A User Guide on Process Integration for the Efficient Use of Energy. 2 ed. United Kingdom: Butterworth-Heinemann, 2006. 416 p. ISBN 978-0-7506-8260-2. (disponível no e-Books / periódicos capes base de dados: ScienceDirect)
- 4. PERLINGEIRO, C. A. G. Engenharia de processos Análise, simulação, otimização e síntese de processos químicos. 2 ed. Brazil: Edgard Blucher, 2018. 198 p. ISBN 9788521213611. (disponível no e-Books)
- 5. RIBEIRO, A. A.; KARAS, E. W. **Otimização contínua Aspectos teóricos e computacionais**. 1 ed. Brazil: Cengage CTP, 2013. 300 p. ISBN 9788522115013. (disponível no e-Books)
- 6. SMITH, R. **Chemical process design and integration**. Chichester: John Wiley& Sons, 2009. 687 p. ISBN 9780471486817.
- 7. TURTON, R.; BAILIE, R. C; WHITING, W. B; SHAEIWITZ, J. A. **Analysis, synthesis, and design of chemical processes**. 3rd ed. Upper Saddle River: Prentice Hall, 2009. 1068 p. ISBN 9780135129661.

- 1. COUPER, J. R.; PNNEY, R. W.; FAIR, J. R.; WALAS, S. M. Chemical process equipment: selection and design. 2nd ed. rev. Amsterdam: Elsevier, 2010. 812 p. ISBN 9780123725066.
- 2. EL-HALWAGI, M. **Process Design, Integration, and Intensification**. 1 online resource (1 p.) ISBN 9783038979838. (disponível no e-Books)
- 3. GREEN, D. W.; PERRY, R. H. (Ed.). **Perry's chemical engineers' handbook**. 8th ed. New York: McGraw-Hill, 2007. ISBN 9780071422949
- 4. LUDWIG, E. E. **Applied process design for chemical and petrochemical plants: volume 3**. 3rd ed. Boston: Gulf, c2001. 700 p. ISBN 9780884156512.
- 5. SEADER, J. D.; HENLEY, E. J. **Separation process principles**. 2nd ed. Hoboken: John Wiley & Sons, 2006. 756 p. ISBN 9780471464808.
- 6. TOWLER, G. P.; SINNOTT, R. Chemical engineering design: principles, practice and economics of plant and process design. 2. ed. Amsterdan: Elsevier: Butterworth-Heinemann, 2013. 1303 p.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular TRABALHO DE CONCLUSÃO DE CURSO I

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 9
Carga Horária Total 102 h Noturno 11

Teórico 0 h **Prático** 102 h **Extensão** 102 h

Pré-requisito (s) Laboratório de Engenharia Química II

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Iniciação à pesquisa científica. Trabalho num campo de pesquisa em Engenharia Química ou áreas correlatas. Divulgação científica.

BIBLIOGRAFIA

Básica

- 1. PINHEIRO, J.M.S. **Da iniciação científica ao TCC: uma abordagem para os cursos de tecnologia**. Rio de Janeiro: Ciência Moderna, 2010. 161 p. ISBN 9788573938906.
- 2. BASTOS, L.R.; PAIXÃO, L.; FERNANDES, L.M.; DELUIZ, N. **(CD-ROM) Manual para a elaboração de projetos e relatórios de pesquisa, teses, dissertações e monografias**. Rio de Janeiro: LTC, 2003.
- 3. MARCONI, M.A.; LAKATOS, E.M. **Fundamentos de metodologia científica**. 7.ed. São Paulo: Atlas, 2010. 297 p. ISBN 9788522457588. (disponível no e-Books)
- 4. ANDRADE, M.M. Introdução à metodologia do trabalho científico: elaboração de trabalhos na graduação. 10.ed. São Paulo: Atlas, 2010. 160 p. ISBN 9788522458561. (disponível no e-Books)
- 5. MARCONI, M.A.; LAKATOS, E.M. **Metodologia do trabalho científico: procedimentos básicos, pesquisa bibliográfica, projeto e relatório, publicações e trabalhos científicos**. 7. ed. São Paulo: Atlas, 2007. 225 p. ISBN 9788522448784.

Complementar

1. A ser definida entre orientador e aluno caso a caso.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular PROJETO DE INSTALAÇÕES QUÍMICAS

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 10
Carga Horária Total 72 h Noturno 12

Teórico 36 h Prático 36 h Extensão 0 h

Pré-requisito (s) Projeto de Processos Químicos **Obrigatório (s)**

Pré-requisito (s)
Recomendado (s)

Desenho Técnico

EMENTA

Fluxograma de engenharia. Detalhamento do projeto de equipamentos. Dimensionamento econômico de tubulações. Comunicação interdisciplinar em projetos. Avaliação econômica de equipamentos junto a fornecedores. Seleção de bombas para aplicações industriais. HAZOP. Localização de válvulas de bloqueio e de retenção. Lógica de controle e intertravamento de processos. Operação de equipamentos industriais.

BIBLIOGRAFIA

Básica

- 1. TURTON, R.; BAILIE, R.C.; WHITING, W.B.; SHAEIWITZ, J.A. **Analysis, Synthesis, and Design of Chemical Processes**, 4ª Edição, Upper Saddle River, N.J., EUA: Prentice Hall, 2012. ISBN-13 : 978-0132618120
- 2. GREEN, D.W.; PERRY, R.H. **Chemical Engineers' Handbook**, 8ª edição, New York, USA: McGraw Hill, 2007. ISBN 9780071422949.
- 3. NASSER JR., R. Otimização da absorção por fenomenologia e análise estatística. Para as colunas de recuperação de acetona na produção de filter tow. Novas Edições Acadêmicas: Saarbrücken, Deutschland, 2015. ISBN 978-613-0-17230-5.
- 4. PERLINGEIRO, C.A.G. Engenharia de Processos Análise, Simulação, Otimização, e Síntese de Processos Químicos, Editora Blucher, São Paulo, 2005. ISBN 85-21-0368-3.
- 5. TIMMERHAUS, K.D; PETERS, M.S; WEST R.E. **Plant Design and Economics for Chemical Engineers**. 3rd ed, McGraw Hill, 2003. ISBN 9780071240444

- 1. BRANAN, C.R. **Rules of Thumb for Chemical Engineers**, 4ª edição, Gulf Professional Publishing, 2005. ISBN 9780750678568.
- 2. BASUSBACHER, E.; HUNT, R. **Process Plant Layout and Piping Design** Prentice Hall PTR, 1993. ISBN: 9780131386297.
- 3. WOILER, S.; MARTINS, W.F. **Projetos, Planejamento, Elaboração e Análise**, Editora Atlas, 2008. ISBN 8522450331.
- 4. TELLES, P.C.S. **Tubulações Industriais: Projeto, Materiais e Montagem**, 10^a Ed., LTC, 2010. ISBN 978-85-216-1289-6.
- 5. MACINTYRE, C.R. Bombas e Instalações de Bombeamento, LTC, 1997. ISBN 8521610866.
- 6. CONSIDINE, D.M. **Process Instruments and Controls Handbook**, 1^a Ed., McGraw-Hill Book Company, New York, 1957. ISBN 07-012425-6.
- 7. SEIDER, W.D., SEADER, J.D., LEWIN, D.R. **Process Design Principles Synthesis, Analysis and Evaluation**, 1ª Ed., John Wiley & Sons Inc, New York, 1999. ISBN 0-471-24312-.
- 8. SHREVE, R. N. **Chemical Process Industries**, 3ª edição, McGraw-Hill, Kogakusha Co., New York, Tokyo, 1967. ISBN 66-20721.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular SEGURANÇA INDUSTRIAL

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 9

Carga Horária Total 36 h Noturno 12
Teórico 36 h Prático 0 h Extensão 0 h

Pré-requisito (s) Não há Obrigatório (s)

Pré-requisito (s)
Recomendado (s)
Processos Químicos Industriais

EMENTA

Introdução à segurança do trabalho – Legislação. Proteção coletiva e individual. Acidentes, Incidentes e Atos Inseguros. CIPA – Composição, Organização e Mapa de Risco. Metodologia de Investigação da Causa de Acidente. Metodologias de Detecção de Risco. Prevenção e combate a incêndios e desastres em estabelecimento, edificações e áreas de reunião.

BIBLIOGRAFIA

Básica

- 1. CROWL, D. A. Segurança de Processos Químicos. Editora LTC, 3ª edição, 2014. (disponível no e-books)
- 2. CARDELLA, B. **Segurança no Trabalho e Prevenção de Acidentes: Uma Abordagem Holística.** Editora Atlas, 1ª edição, 1999.
- 3. SAMPAIO, G.M.A. Pontos de Partida em Segurança Industrial. Editora Qualitymark, 1ª edição, 2003.

- 1. ZOCCHIO, A. **Prática da Prevenção de Acidentes: ABC Segurança do Trabalho**. Editora Atlas, 7ª edição,2002. (disponível no e-books)
- 2. BARSANO, P.R.; BARBOSA, R. P. Controle de Riscos Prevenção de Acidentes no Ambiente Ocupacional. Editora Saraiva, 2014. (disponível no e-books)
- 3. CAMILLO JÚNIOR, A. B. **Manual de Prevenção e Combate à Incêndios.** Editora SENAC São Paulo, 6ª edição, 2005.
- 4. AYRES, D.O.; CORREA, J.A.P. Manual de prevenção de Acidentes do Trabalho: Aspectos Técnicos e Legais. Editora Atlas, 1ª edição, 2001.
- 5. BARSANO, P.R., BARBOSA, R. P.; SOARES, S. P. S. **Equipamentos de Segurança.** Editora Saraiva, 2014. (disponível no e-books)

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Unidade Curricular TRABALHO DE CONCLUSÃO DE CURSO II

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral 10
Carga Horária Total 108 h Noturno 12

Teórico 0 h Prático 108 h Extensão 108 h

Pré-requisito (s) Trabalho de Conclusão de Curso I

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Iniciação à pesquisa científica. Trabalho num campo de pesquisa em Engenharia Química ou áreas correlatas. Divulgação científica.

BIBLIOGRAFIA

Básica

- 1. PINHEIRO, J.M.S. **Da iniciação científica ao TCC: uma abordagem para os cursos de tecnologia**. Rio de Janeiro: Ciência Moderna, 2010. 161 p. ISBN 9788573938906.
- 2. BASTOS, L.R.; PAIXÃO, L.; FERNANDES, L.M.; DELUIZ, N. (CD-ROM) Manual para a elaboração de projetos e relatórios de pesquisa, teses, dissertações e monografias. Rio de Janeiro: LTC, 2003.
- 3. MARCONI, M.A.; LAKATOS, E.M. **Fundamentos de metodologia científica**. 7.ed. São Paulo: Atlas, 2010. 297 p. ISBN 9788522457588. (disponível no e-Books)
- 4. ANDRADE, M.M. Introdução à metodologia do trabalho científico: elaboração de trabalhos na graduação. 10.ed. São Paulo: Atlas, 2010. 160 p. ISBN 9788522458561. (disponível no e-Books)
- 5. MARCONI, M.A.; LAKATOS, E.M. Metodologia do trabalho científico: procedimentos básicos, pesquisa bibliográfica, projeto e relatório, publicações e trabalhos científicos. 7. ed. São Paulo: Atlas, 2007. 225 p. ISBN 9788522448784.

Complementar

1. A ser definida entre orientador e aluno caso a caso.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Unidade Curricular ATIVIDADES COMPLEMENTARES

Curso ENGENHARIA QUÍMICA Termo de oferecimento Integral não

vinculada um termo específico

Carga Horária Total 60 h Noturno não

vinculada um termo específico

Teórico 0 h **Prático** 60 h **Extensão** 0 h

Pré-requisito (s) Não há

Obrigatório (s)

Pré-requisito (s) Não há

Recomendado (s)

EMENTA

Trabalhos de iniciação científica, projetos multidisciplinares, visitas teóricas, trabalhos em equipe, desenvolvimento de protótipos, monitorias, participação em empresas juniores. Organização de eventos. Participação ou apresentação de trabalhos em eventos técnicos e científicos. Realização de cursos.

BIBLIOGRAFIA

Básica

1. BRASIL. Resolução nº 2, de 24 de abril de 2019. Institui as Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia. Disponível em: http://portal.mec.gov.br/component/content/article?id=12991. Acesso em: 25 de março de 2022.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

8. PROCEDIMENTOS DE AVALIAÇÃO

8.1 Sistema de Avaliação do Processo de Ensino e Aprendizagem

8.1.1 Avaliação do Corpo Discente

Cada docente coordenador de Unidade Curricular tem autonomia para definir os processos avaliativos mais adequados em função das especificidades de sua disciplina, desde que sejam respeitadas as normas estabelecidas no Regimento Interno da ProGrad. As atividades avaliativas e seus respectivos pesos de ponderação, bem como a equação de cálculo da média final deverão ser comunicados aos alunos, de forma clara e precisa, no início de cada semestre letivo, no primeiro dia de aula.

Dependendo de cada Unidade Curricular em particular, a apuração do aprendizado do estudante poderá se dar por meio de provas escritas sem ou com consulta, provas orais individuais, projetos, listas de exercícios, relatórios de atividades de laboratório ou de trabalhos computacionais, provas com a utilização de computador, apresentação de seminários, debates e discussões em sala de aula, relatório de visitas técnicas, entrega de resumos de palestras ou de seminários, elaboração de monografias e/ou artigos. Algumas destas atividades podem ser realizadas individualmente ou em grupo.

A Comissão de Curso da Engenharia Química recomenda que não sejam utilizados critérios de avaliação subjetivos ou que deem margem a distorções na apuração do mérito e desempenho de cada estudante, visando que as avaliações sejam sempre objetivas, justas e precisas.

O critério de aprovação do estudante nas Unidades Curriculares segue a determinação da Pró-Reitoria de Graduação (ProGrad), conforme consta nos artigos 89º a 92º de seu Regimento Interno:

- o estudante será reprovado automaticamente e sem direito a fazer o exame caso obtenha uma nota inferior a 3,0;

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

- o estudante será automaticamente aprovado caso obtenha uma nota igual ou superior a 6,0;
- o estudante deverá fazer o exame caso obtenha uma nota situada na faixa entre 3,0 e 5,9. Neste caso, a média aritmética entre a nota prévia ao exame e a nota do exame deverá ser igual ou superior a 6,0 para que o estudante seja aprovado, caso contrário o estudante será reprovado por nota;
- O estudante deverá ter presença em sala de aula de pelo menos 75% da carga horária fixada na matriz curricular, caso contrário será reprovado por frequência.

O curso de Engenharia Química oferece, nos dois turnos, três Unidades Curriculares com características distintas de avaliação: Trabalho de Conclusão de Curso I (TCC-I), Trabalho de Conclusão de Curso II (TCC-II) e Estágio Supervisionado. As normas que regem essas Unidades Curriculares encontram-se disponibilizadas na plataforma Moodle da Comissão do Curso de Engenharia Química (https://grad.sead.unifesp.br/course/view.php?id=427), à qual todos os estudantes de graduação têm acesso, bem como em páginas específicas:

- Página da Comissão de Trabalho de Conclusão de Curso:

TCC I (integral e noturno): https://grad.sead.unifesp.br/course/view.php?id=5410

TCC II (integral e noturno): https://grad.sead.unifesp.br/course/view.php?id=5413

- Página da Comissão de Estágio em Engenharia Química, CEEQ:

http://ead.unifesp.br/graduacao/course/view.php?id=365

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

8.1.2 Avaliação do Ensino

Cada Unidade Curricular e seu docente coordenador, bem como os docentes colaboradores, serão avaliados de forma anônima pelos estudantes por meio do preenchimento de um formulário contendo questões de múltipla escolha, além de um campo para comentários. Os estudantes deverão preencher os formulários de avaliação antes da publicação das notas finais das Unidades Curriculares em questão.

A Comissão de Curso disponibiliza o formulário de avaliação das unidades curriculares semestralmente para os docentes aplicarem às suas turmas em período anterior à realização das provas finais. Esta conduta colabora para que as respostas dos alunos não sejam influenciadas pelas notas. Estes formulários são criados no Google Forms de forma que os docentes das respectivas Unidades Curriculares e coordenação de curso tenham acesso às respostas.

Como complemento destas avaliações, os problemas relacionados às condições de manutenção da infraestrutura de equipamentos, computadores, salas de aula, laboratórios didáticos e de pesquisa, bem como os relacionados à disponibilidade de reagentes, vidrarias, softwares e livros, entre outros, são discutidos em diferentes instâncias, como reuniões da Comissão de Curso, Câmara de Graduação, Congregação do *Campus* Diadema e reuniões do Departamento de Engenharia Química.

Os resultados desses comunicados e avaliações são compilados pela Comissão de Curso e utilizados como diretrizes para o estabelecimento de ações visando à melhoria contínua da qualidade do processo de ensino/aprendizagem de seu corpo docente, bem como para a cobrança, junto às instâncias administrativas e acadêmicas superiores, de condições que garantam a segurança, a qualidade e a disponibilidade das instalações, dos equipamentos e dos materiais necessários às atividades de ensino, pesquisa e extensão na Unifesp.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

A Comissão de Curso da Engenharia Química dá voz a docentes e discentes de uma forma imparcial de modo a garantir que a justiça prevaleça, sempre zelando pela valorização do ser humano e procurando cultivar um ambiente de convivência amigável, cordial e produtivo. As ações da CCEQ nos casos de indisciplina e/ou comportamentos inadequados de uma das partes contra a outra, vão desde a emissão de cartas de recomendação ou determinação de procedimentos justos a serem adotados pela parte faltosa, a recomendação de cursos de capacitação, ou, em caso de reincidência, encaminhamento do problema a instâncias superiores ou abertura de processos disciplinares junto à Pró-Reitoria de Assuntos Estudantis (PRAE) nos casos mais graves.

8.2 Sistema de Avaliação do Projeto do Curso

O Projeto Pedagógico do curso de Engenharia Química é avaliado continuamente pela CCEQ com assessoria do Núcleo Docente Estruturante (NDE) e mediante o *feedback* de todo o corpo docente, discente e técnicos educacionais.

Periodicamente a CCEQ realiza comparações da estrutura curricular do Curso em relação às Matrizes Curriculares adotadas em centros de excelência de universidades brasileiras e internacionais, visando captar as tendências pedagógicas mais atuais e avaliar sua pertinência e viabilidade dentro das especificidades do curso, do mercado, de capacitação docente e discente e demais realidades regionais e nacionais da conjuntura brasileira.

A CCEQ incentiva e procura viabilizar a participação de docentes do curso no ENBEQ (Encontro Brasileiro sobre o Ensino de Engenharia Química). Este é um importante Fórum para atualizações de projetos pedagógicos.

A participação discente nesse processo está garantida por meio dos diversos instrumentos de avaliação já mencionados em itens prévios. Os alunos do curso também são avaliados pelo Exame Nacional de Desempenho de Estudantes (ENADE), instrumento de medição de desempenho do Sistema Nacional de

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Avaliação da Educação Superior (SINAES). Principalmente nas primeiras edições, um dos problemas verificados foi o reduzido número de alunos que efetivamente se preparam e realizam o exame de uma forma séria e responsável. Além disso, nas últimas edições a CCEQ notou no preenchimento do formulário do ENADE, questões de desconhecimento da estrutura do *Campus*, além de colocarem todo o descontentamento sobre as condições estruturais do *Campus* na avaliação. Trabalho intenso da Comissão de Curso tem sido feito e será continuado para incentivar os alunos a fazerem a prova seriamente e responderem as questões relacionadas às condições estruturais e pedagógicas de forma justa.

A CCEQ tem procurado ressaltar a importância da participação de todos os alunos nesse exame, de modo que, ultimamente, tem-se observado um ganho na taxa de adesão e comprometimento no sentido de responderem às questões de uma forma mais responsável. Sem este comprometimento, os resultados do ENADE não refletirão de uma forma fidedigna o nível atual da qualidade do ensino de Engenharia Química praticado na Unifesp, deixando de ser um norteador apropriado para a implantação das melhorias que porventura sejam necessárias.

Para finalizar, salienta-se que todas as informações coletadas de egressos do Curso e dos formulários de avaliação de Unidades Curriculares são consideradas de uma forma sistemática e periódica para a proposição de melhorias e adequações do Projeto Pedagógico que reflitam as reais necessidades do profissional da Engenharia Química em suas mais diversas possibilidades de atuação, sempre visando sua excelência técnico-científica, seja na área empresarial ou acadêmica, seja na vanguarda da criação/geração ou da viabilização/execução das próximas tecnologias que impulsionarão o Brasil na vanguarda do progresso.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

9. ATIVIDADES COMPLEMENTARES

As Diretrizes Curriculares Nacionais (DCN) do Curso de Graduação em Engenharia (Resolução CNE/CES nº 2, de 24 de Abril de 2019) prevêem que as atividades complementares façam parte do conjunto das atividades de aprendizagem e assegurem o desenvolvimento das competências estabelecidas no perfil do egresso. Estas atividades podem ser realizadas dentro ou fora do ambiente escolar.

O parecer homologado da Resolução nº 2 de 24 de abril de 2019 faz referência ao texto da Resolução CNE/CES 11, DE 11 DE Março de 2002, em que "deverão também ser estimuladas atividades complementares, tais como trabalhos de iniciação científica, projetos multidisciplinares, visitas teóricas, trabalhos em equipe, desenvolvimento de protótipos, monitorias, participação em empresas juniores e outras atividades empreendedoras".

As atividades complementares têm a finalidade de enriquecer o processo de ensino-aprendizagem, privilegiando a complementação da formação discente, reconhecendo a aquisição de conteúdos e competências relacionados aos campos social, profissional e de ações extensionistas. De acordo com o parecer emitido pelo Conselho Nacional de Educação (Resolução CNE/CES nº 2, DE 24 DE ABRIL DE 2019), as atividades complementares podem ser classificadas em quatro grandes grupos e mantendo-se o que foi estabelecido na Resolução nº 1, de 11 de março de 2002, serão agrupadas como segue:

Grupo I: Atividades de ensino;

Grupo II: Atividades de pesquisa;

Grupo III: Atividades de extensão;

Grupo IV: Atividades culturais e sociais.

As diretrizes curriculares nacionais dos cursos de graduação em engenharia (Resolução CNE/CES nº 2, DE 24 DE ABRIL DE 2019) também destacam o papel das atividades curriculares complementares no desenvolvimento de conteúdos

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

integralizados, no aprimoramento profissional e na interação do discente com a comunidade e com o mercado de trabalho.

Da conceituação destas atividades e considerando-as como complementares àquelas contempladas na proposta curricular do curso, a carga horária das atividades curriculares complementares do Curso de Engenharia Química será de 60 (sessenta) horas. A normatização específica abrangendo o número de horas que poderá vir a ser creditado e a forma da documentação a ser exigida para o cômputo de carga horária será disposta em Instrução Normativa elaborada pela Comissão de Curso e/ou Subcomissão por esta designada.

De acordo com a divisão em quatro agrupamentos, serão consideradas como "Atividade Curricular Complementar", dentre outras que poderão vir a ser aprovadas pela Comissão de Curso, as seguintes atividades:

Atividades de ensino: unidades curriculares de graduação, curso de língua estrangeira, curso de aperfeiçoamento, monitoria, participação como ouvinte em evento e visita técnica.

Atividades de pesquisa: participação em projeto de pesquisa, publicação de artigo científico, publicação de resumo em evento de pesquisa, apresentação de trabalho em evento de pesquisa e organização de evento relacionado à pesquisa.

Atividades de extensão: Participação em projeto de extensão não vinculados a Unidades Curriculares fixas e eletivas, publicação de trabalho ou resumo em evento de extensão, participação como ouvinte em evento (ou palestra) voltado à extensão, organização de evento, participação em Empresa Júnior reconhecida formalmente pela Unifesp.

Atividades culturais e sociais: participação como organizador ou ouvinte em atividades culturais ou artísticas, trabalho voluntário em entidade social, participação em atividades esportivas (jogos universitários, copa acadêmica), participação em Associação Atlética ou Cultural, representação em órgãos e/ou comissões da Unifesp, participação em Diretório Acadêmico e órgãos (ou comissões) vinculados à representação estudantil.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

O Regulamento das Atividades Complementares está disponível no Moodle do curso de Engenharia Química: https://grad.sead.unifesp.br/course/view.php?id=427.

Lá estão descritas todas as regras e procedimentos, além de uma tabela de atribuição de carga horária às atividades realizadas pelos alunos. Todos os alunos do curso, mesmo os ingressantes anteriores a 2023, deverão cumprir essa carga horária de atividades complementares.

9.1 Empresa Júnior de Engenharia Química

Os principais cursos de Engenharia Química do País têm incentivado os seus alunos no desenvolvimento das chamadas Empresas Juniores. Tais entidades consistem em associações civis sem fins econômicos, porém com forte enfoque educativo, visando apresentar, antecipadamente, a realidade do mercado de trabalho aos alunos. As Empresas Juniores típicas dos cursos de Engenharia Química envolvem, principalmente, prestações de serviços nas áreas de processos industriais, possibilitando ao aluno a aplicação dos conhecimentos teóricos adquiridos ao longo do curso em problemas reais.

Hoje, a AEPEQ Jr (Associação Empresa Paulista de Engenharia Química Júnior) é uma empresa constituída, com CNPJ, e teve o seu reconhecimento aprovado pela Congregação do *Campus* Diadema durante a reunião extraordinária de 12/05/2016. A empresa pode ser conferida em sua página de Internet no seguinte endereço: https://epeqjr.com.

A EPEQ Jr. é uma empresa júnior (EJ) da Universidade Federal de São Paulo fundada no ano de 2012 pelos alunos do curso de Engenharia Química com intuito de desenvolver, e aproximar os alunos do Curso, a práticas e atividades relacionadas a empreendedorismo e mercado de trabalho enquanto ainda estudantes. A empresa é formada apenas por alunos do curso de Engenharia Química e subdivide-se em diretorias organizacionais: Presidência, Administrativo Financeiro, Marketing, Recursos Humanos, Projetos e Vendas. Cada diretoria possui

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

um escopo de atividades para que ao todo possa contribuir para a manutenção da empresa júnior.

Como todas as empresas juniores, possui organograma de Missão, Valores e Visão estruturados. Sua missão é promover soluções completas no ramo da Engenharia, proporcionando desenvolvimento aos seus membros e causando impacto na sociedade na qual estão inseridos. Sua visão é ser uma Empresa Júnior Inovadora, a fim de entregar resultados que impactem a história de seus clientes e colaboradores. E seus cinco valores são: Sinergia; Líderes do nosso Destino; Movidos pelo Propósito; Desenvolvimento Consciente e Paixão. Para promover a vivência empresarial para seus membros, a EPEQ Jr., além de proporcionar o conhecimento técnico e comportamental de acordo com as atividades exercidas nas diretorias, também executa projetos comerciais dentro de seis cartas de serviços:

- Estudo de Mercado;
- Consultoria em Segurança;
- Gerenciamento de Resíduos;
- Neutralização de Carbono;
- Otimização Empresarial;
- Organização Empresarial.

A EPEQ Jr. já executou projetos para diferentes empresas como Oxiteno, EuroAmerican, Modial, Avanzi Química, entre outras. Federada em outubro de 2019 a EPEQ Jr. faz parte do Movimento Empresa Júnior Brasil (MEJ) e possui metas anuais para serem alcançadas: meta de faturamento, participação de membros em projetos, taxa de motivação dos membros, taxa de participação em eventos do MEJ, taxa de projetos com outros agentes do ecossistema, número de soluções abrangentes no mercado e índice de satisfação dos clientes. A empresa júnior objetiva aprimorar seus processos e resultados, proporcionando melhor vivência empresarial e conhecimento para seus membros e também busca atingir um maior nível de maturidade de empresa júnior.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Docentes do curso de Engenharia Química da Unifesp dão suporte e orientam os alunos da empresa júnior em muitos dos projetos desenvolvidos por eles.

9.2 Centro Acadêmico Unifesp de Engenharia Química (CAUEQ)

O CAUEQ, Centro Acadêmico Unifesp de Engenharia Química, é formado por representantes eleitos pelos demais estudantes do curso de Engenharia Química da Unifesp, com a missão de trabalhar para os interesses e direitos dos discentes. As atividades do CAUEQ visam estimular a participação dos alunos tanto em atividades acadêmicas, quanto de lazer e culturais. A gestão é democrática e heterogênea, formada por alunos de todos os termos e turnos, garantindo uma gestão representativa da maioria e promovendo uma interação sinergética.

O CAUEQ protagoniza a realização de vários eventos extracurriculares e que já fazem parte do calendário acadêmico do curso e do *Campus*. Entre eles, o CAUEQ, juntamente com os representantes discentes dos outros cursos de Engenharia da Unifesp, realizam anualmente a Semana das Engenharias. Este evento objetiva a integração entre os diversos cursos de Engenharia da Unifesp, espalhados nos *campi* Diadema, São José dos Campos e Baixada Santista. Em 2022 será realizada a sua terceira edição. O CAUEQ também lidera outro evento criado por eles, o Dia da Engenharia Química. Atualmente este evento é organizado conjuntamente com docentes da graduação e pós-graduação. Este evento também é realizado anualmente (com duração de dois a três dias) e já está na sua quarta edição. Todos estes eventos contam com palestras, mesas-redondas, minicursos, oficinas e apresentação de trabalhos de alunos, docentes, engenheiros e profissionais de empresas de atuação relevante à formação dos alunos.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

10. ESTÁGIO CURRICULAR

Os cursos de Engenharia Química da Unifesp (períodos integral e noturno) incentivam a realização de estágios por parte dos alunos, propiciando condições de contato com o ambiente de trabalho e com atividades práticas do exercício da profissão, com aplicação e aprofundamento dos conhecimentos adquiridos durante o curso. O aluno deverá cumprir obrigatoriamente uma carga horária de 160 horas, referente à Unidade Curricular Estágio Supervisionado. As normas gerais de estágios obrigatórios e não obrigatórios são regidas pelo Regulamento Geral de Estágio do Curso de Engenharia Química da Unifesp que está divulgado no ambiente Moodle da UC Estágio Supervisionado.

As atividades de estágio, obrigatório e não obrigatório, são acompanhadas pela Comissão do Curso de Engenharia Química por meio de uma subcomissão subordinada a ela, a Comissão de Estágios do Curso de Engenharia Química (CEEQ), composta por três representantes docentes, incluindo o coordenador e um suplente, e dois representantes discentes, um do curso integral e outro do noturno, conforme disposto em regulamento próprio. Os estágios obrigatórios e não obrigatórios serão acompanhados individualmente pelos respectivos docentes supervisores e pelo docente responsável pela Unidade Curricular Estágio Supervisionado. Vale salientar que em cada semestre que estiver realizando estágio, mesmo que seja não-obrigatório, o aluno deverá preparar um relatório sobre as atividades desenvolvidas (relatório de estágio), o qual deve ser avaliado pelo docente supervisor, que deve entregá-lo à Comissão de Estágios do Curso de Engenharia Química da Unifesp em datas definidas. Os modelos de relatório de estágio são disponibilizados aos alunos, e sua entrega ao professor supervisor é obrigatória. O aluno terá a Unidade Curricular cumprida (considerado aprovado) após a entrega do relatório de estágio obrigatório ao professor supervisor, e após ter realizado as 160 horas de estágio. Os estágios são realizados em Empresas ou Instituições conveniadas ou cadastradas na Unifesp e aptas a oferecer atividades de estágio compatíveis com aquelas esperadas pela Comissão do Curso de Engenharia

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Química da Unifesp para uma adequada formação acadêmica do estudante. Ainda, existe a opção de realização do Estágio em laboratórios na própria Universidade.

Por meio de formulários próprios, durante a realização dos estágios (obrigatório e não obrigatório), os alunos serão avaliados pelos seus tutores na respectiva empresa, mas também deverão avaliar as condições oferecidas pela empresa para a realização do seu estágio. A lista de empresas e instituições conveniadas à Unifesp é disponibilizada aos alunos no site da instituição.

O Estágio é uma atividade que permeia a formação do aluno, é um ato educativo escolar supervisionado, possibilitando a formação em ambiente institucional, empresarial ou comunitário em geral dos educandos que estejam matriculados no curso de Engenharia Química da Universidade Federal de São Paulo. O estágio supervisionado obrigatório deve ser realizado quando o aluno possuir uma formação intermediária mínima, com 50% da carga horária total do curso de Engenharia Química aprovada, de forma que:

- (i) possa exercer atividades de estágio que efetivamente sirvam ao propósito de complementação curricular;
- (ii) possa integrar os conhecimentos de pesquisa, extensão e ensino em benefício da sociedade, de acordo com a realidade local e nacional;
- (iii) possibilite o desenvolvimento do comportamento ético e compromisso profissional, contribuindo para o aperfeiçoamento profissional e pessoal do estagiário;
- (iv) propicie a interação com a realidade profissional e o ambiente de trabalho.

Para o estágio não-obrigatório exige-se o cumprimento (pré-requisitos) das unidades curriculares de Química Geral Experimental e Balanço de Massa e Energia, além do cumprimento de carga horária máxima de 20 horas semanais. Para o estágio obrigatório exige-se o cumprimento (pré-requisito) de Balanço de massa e energia, Operações unitárias I e Análise instrumental. Após o cumprimento destes pré-requisitos, o estágio poderá atingir as 30 horas semanais.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

O estágio visa o aprendizado de competências próprias da atividade profissional e à contextualização curricular e principalmente o desenvolvimento do estudante para a vida cidadã e para o trabalho. Considerando que é necessário um equilíbrio entre a carga horária de atividades acadêmicas e a carga horária de atividades de estágio (com máximo de 30h/semana de atividades de estágio em ambos os períodos – integral e noturno), o acadêmico deverá obrigatoriamente inscrever-se em UCs que perfaçam pelo menos 50% (cinquenta por cento) da carga horária semanal prevista para o período letivo, de acordo com o Regimento Interno da Pró-Reitoria de Graduação.

Os supervisores orientarão os alunos no desenvolvimento de suas atividades junto às empresas e instituições, e também os avaliarão quanto ao desempenho e à produção do relatório final do estágio não obrigatório. O aluno apresentará periodicamente, em prazo não superior a 6 (seis) meses, relatório das atividades visando acompanhamento do Índice de Desempenho Acadêmico (IDA= somatória da carga horária de UCs aprovadas no semestre/somatória da carga horária de UCs matriculadas no semestre).

Considera-se que os alunos que apresentem um IDA igual ou maior a 50% (IDA ≥ 0,5) têm condições de conciliar suas atividades de estágio sem prejudicar o aproveitamento das atividades acadêmicas. Os alunos, cujo coeficiente de desempenho acadêmico não atingirem o valor mínimo, terão o estágio suspenso por um período mínimo de 6 meses.

Todos os documentos e normas citados são disponibilizados on-line aos alunos na página da Comissão de Estágios do Curso de Engenharia Química (CEEQ) da Unifesp, no endereço: http://ead.unifesp.br/graduacao/course/view.php?id=365

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

11. TRABALHO DE CONCLUSÃO DE CURSO

Os cursos de Engenharia Química da Unifesp, oferecidos no período integral e noturno, disponibilizam Unidades Curriculares específicas que sintetizam os conhecimentos acadêmicos adquiridos durante todo o curso, aplicando-os na resolução de problemas reais.

As Unidades Curriculares denominadas Trabalho de Conclusão de Curso I (TCC-I) e Trabalho de Conclusão de Curso II (TCC-II) apresentam carga horária semestral de 102 e 108 horas, respectivamente, e devem ser cursadas nos dois últimos semestres do curso (integral ou noturno).

As Unidades Curriculares TCC-I e TCC-II são planejadas, coordenadas e avaliadas pela Comissão de Trabalho de Conclusão do Curso de Engenharia Química (CTCC-EQ), que é uma subcomissão subordinada à Comissão do Curso de Engenharia Química (CCEQ). É composta por três representantes docentes vinculados ao Curso de Engenharia Química da Unifesp.

Vale destacar que o Trabalho de Conclusão de Curso poderá ser realizado individualmente ou em grupo. O trabalho desenvolvido em equipe incentiva os alunos no gerenciamento da divisão de tarefas em grupos de trabalhos, característica muito importante no campo profissional.

As duas Unidades Curriculares de TCC têm 100% de suas cargas horárias curricularizadas para extensão. Os Trabalhos de Conclusão de Curso são importantes formas de divulgação do papel que o Engenheiro Químico desempenha na sociedade, pois os discentes do curso de Engenharia Química utilizam todo seu conhecimento adquirido durante a graduação para desenvolver o TCC.

Atualmente os TCC's são apresentados em escolas públicas de ensino médio. São confeccionados pôsteres ou vídeos que apresentam estes projetos de forma mais simples, didática e interessante aos estudantes nesta etapa de aprendizado, mostrando-os a importância do desenvolvimento técnico e científico, além de incentivá-los a esta profissão.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

O Trabalho de Conclusão de Curso final é depositado no Repositório Institucional Unifesp (RIU), que é um sistema de informação de acesso, preservação e divulgação da produção científica e intelectual da Universidade Federal de São Paulo. O acesso é público e gratuito e os trabalhos de graduação são colocados lá após aprovação em banca de defesa formada por três docentes, incluindo o orientador. O TCC também deve passar por software de análise de similaridade antes de ser depositado neste repositório. A Unifesp assina atualmente o Turnitin[®].

Segue o link de acesso aos Trabalhos de Conclusão de Curso da Engenharia Química:

https://repositorio.unifesp.br/handle/11600/61198

Maiores informações podem ser obtidas nas páginas do Moodle da Comissão de Trabalho de Conclusão de Curso:

TCC I integral e noturno: https://grad.sead.unifesp.br/course/view.php?id=5410

TCC II integral e noturno: https://grad.sead.unifesp.br/course/view.php?id=5413

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

12. APOIO AO DISCENTE

Todo início de ano a Unifesp conta com a participação dos alunos ingressantes em diversas palestras sobre temas variados, em eventos de integração e confraternização. Em uma destas palestras, a Comissão do Curso de Engenharia Química dá as boas-vindas aos ingressantes e apresenta informações básicas sobre o *Campus* e sobre o curso. Durante essa palestra, os estudantes são informados sobre seus direitos e deveres, sobre como acessar documentos tais como o Estatuto e Regimento Geral da Unifesp, o Regimento Interno da ProGrad e o Projeto Pedagógico do Curso de Engenharia Química.

Além disto, a página de acesso ao Moodle da Coordenação do Curso é divulgada:

http://ead.unifesp.br/graduacao/course/view.php?id=665

Nesta página são disponibilizadas as informações sobre o curso, bem como os contatos dos membros da CCEQ. Os alunos do Centro Acadêmico Unifesp de Engenharia Química (CAUEQ) também participam do evento, dando sequência ao processo de boas-vindas por meio da realização de festas e promovendo outros eventos de acolhida aos novos integrantes da comunidade. Este evento é denominado Recepção dos Calouros.

Mais ainda, a Unifesp, *Campus* Diadema, por meio de sua Secretaria Acadêmica, disponibiliza em seu site na internet, todas as informações importantes para os alunos. Neste endereço (https://www.sagdiadema.sites.unifesp.br/) é disponibilizado um manual de recepção aos calouros, com todas as regras referentes ao Regimento Interno, calendários, serviços prestados pela Secretaria Acadêmica, além dos programas e serviços oferecidos pela universidade. Entre os serviços prestados aos alunos pela Secretaria Acadêmica estão: emissão de atestados de matrícula, abertura de processos, bilhete escolar para transportes públicos, colação de grau, divulgação da grade horária e salas de aulas.

Deste modo, o estudante de Engenharia Química recebe todas as informações e contatos de que precisa para que, em uma eventualidade, possa se sentir amparado

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

e acionar os mecanismos de ajuda da CCEQ e da Unifesp. Os discentes também podem utilizar a Ouvidoria da Unifesp como um canal de comunicação oficial para o registro de reclamações, as quais podem ser feitas de modo a preservar a identidade do aluno.

Atualmente, o Curso de Engenharia Química oferece 50% de suas vagas em ambos os turnos para estudantes ingressantes pelo regime de cotas. A Pró-Reitoria de Assuntos Estudantis (PRAE - http://www.unifesp.br/reitoria/prae/) coordena o cadastro e seleção de estudantes em situação de vulnerabilidade socioeconômica, com o objetivo de repassar os auxílios financeiros oriundos de programas do Governo Federal, ou, quando possível, provenientes de recursos próprios. Dentre os programas de apoio financeiro promovidos pela PRAE, citam-se os auxílios moradia, alimentação, transporte e, para estudantes que possuam filhos, creche. Além disto, a PRAE publica anualmente um edital de abertura de inscrições para a concessão de Bolsas de Iniciação à Gestão, o que constitui uma boa oportunidade aos estudantes interessados e que sejam contemplados.

A PRAE também promove avaliações e estudos de desempenho comparativo de alunos cotistas e não-cotistas, edita publicações, faz o acompanhamento de egressos e realiza eventos e fóruns de debate sobre permanência estudantil, empenhando-se na busca contínua pela ampliação do montante de recursos destinados para o apoio aos estudantes.

O aluno interessado conta também com apoio pedagógico e social da PRAE em fluxo contínuo, para que possa lidar melhor com os possíveis choques e inseguranças a que eventualmente seja submetido ao longo de sua trajetória na Unifesp. Esse acompanhamento constitui uma das diretrizes de atuação institucional da Unifesp no âmbito do Plano Nacional de Assistência Estudantil – PNAES, do Governo Federal.

Os Núcleos de Apoio aos Estudantes (NAEs - http://www.unifesp.br/campus/dia/servicos/nae) constituem verdadeiros apêndices da PRAE a promoverem o

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

acolhimento aos estudantes de uma forma mais próxima e direta no âmbito de cada *Campus* da Unifesp.

Os NAEs contam com equipes multiprofissionais em cada *Campus*, geralmente nas áreas de serviço social, educação e saúde, as quais atuam na prevenção de doenças e na promoção da saúde dos estudantes, fazendo ainda o acolhimento e orientação inicial no que diz respeito às demandas dos estudantes. Caso necessário, esses profissionais encaminham o estudante para atendimento especializado junto ao SSCD (Serviço de Saúde do Corpo Discente), o qual proporciona o acesso do discente a equipes de médicos e de odontologistas.

O SSCD proporciona o atendimento dos estudantes em diversas especialidades, tais como: odontologia, ginecologia, ortopedia, psiquiatria, nefrologia, cirurgia vascular, urologia, dermatologia, otorrinolaringologia e endocrinologia e também com apoio de serviço de enfermagem.

O estudante da Unifesp tem acesso a dois restaurantes universitários a preços subsidiados, os quais proporcionam refeições nutritivas, balanceadas e adequadas, recebendo ainda orientações sobre estilos de vida saudáveis. Um dos restaurantes está localizado na unidade José de Filippi (Eldorado), mais distante das outras e o principal restaurante está localizado no andar térreo do novo prédio inaugurado no início de 2022, denominado Prédio de Acesso, na unidade José Alencar.

No *Campus* Diadema da Unifesp, o estudante conta com o apoio de ônibus circulares gratuitos para o deslocamento entre suas várias unidades em horários anteriores ao início das aulas e posteriores a elas, bem como em alguns horários intermediários. Além disso, todos os estudantes podem solicitar os cartões do Bilhete Único (Município de São Paulo) e cartão da SPTrans (Governo Estadual), os quais proporcionam 50% de desconto nos preços do transporte público municipal e intermunicipal (ônibus, metrô e trem). Há requisitos específicos para se obter a gratuidade para estudantes e estes podem ser verificados no site do *Campus* Diadema. Lá também há instruções para bilhetes específicos de outros municípios da região metropolitana de São Paulo:

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

https://sagdiadema.sites.unifesp.br/index.php/assuntos-educacionais/bilhetes-escola res

Finalmente, no início de 2008, foi constituído na Unifesp o NAI (Núcleo de Acessibilidade e Inclusão). Ele é composto por uma equipe multidisciplinar que tem por objetivo promover a cultura de convivência com a pessoa com deficiência, permitindo sua atuação em todos os âmbitos sociais como educação, lazer, trabalho e cultura, entre outros. A missão deste núcleo é promover a acessibilidade e inclusão como direito universal a todos os indivíduos independentes de suas características físicas, sensoriais e intelectuais bem como remover barreiras de preconceitos e atitudinais no âmbito da Unifesp e Associação Paulista para o Desenvolvimento da Medicina (SPDM). O NAI do *Campus* Diadema dá suporte ao corpo técnico e docente no acolhimento dos estudantes PCD, estruturando salas de aula e infraestrutura para que possam assistir aulas e participar da vida acadêmica sem limitações.

A Comissão de Curso da Engenharia Química aderiu, no início de 2022, ao novo programa instituído pela Pró-Reitoria de Graduação, chamado de Programa Institucional de Travessia. Ele visa apoiar ingressantes no processo de transição da educação básica para a educação superior, proporcionando-lhes maior integração e engajamento à vida acadêmica. Entre seus objetivos estão:

- Estimular a troca de experiência entre pares e aproximar discentes ingressantes, veteranos/as e docentes;
- Facilitar o acesso a informações sobre a vida e funcionamento na universidade, incluindo os serviços de apoio, auxílios e setores da universidade, de modo a intensificar o vínculo do/da estudante com a instituição e a ampliar a possibilidade de sucesso acadêmico;
- Favorecer a compreensão dos processos de estudos e de aprendizagem, propiciando trocas de experiências e construção de rotina de estudos eficiente;

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

- Apoiar o/a estudante ingressante em suas dúvidas sobre o percurso acadêmico ou letramento acadêmico (perfil do curso, Matriz Curricular e procedimentos acadêmicos).

A CCEQ trabalha incessantemente para estimular a participação dos alunos em cursos, atividades de extensão, pesquisa, monitoria, agremiações e concepção e participação de eventos, sejam internos ou externos à universidade.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

13. PROGRAMAS INSTITUCIONAIS

A Unifesp oferece anualmente vários programas institucionais de bolsas de Iniciação Científica, entre eles estão o Programa Institucional de Bolsas de Iniciação Científica (PIBIC), Programa Institucional de Bolsas de Iniciação em Desenvolvimento Tecnológico e Inovação (PIBITI) e o Programa Institucional de Bolsas de Iniciação Científica PIBIC nas Ações Afirmativas (PIBIC-AF). O foco do programa PIBIC é o desenvolvimento do pensamento científico aos alunos de graduação, incentivando-os e qualificando-os à atuação em qualquer atividade profissional. Já o PIBITI foca estas qualidades para a atuação em inovação científica e tecnológica em empresas do país. Finalmente o PIBIC-AF tem a finalidade de complementar as ações afirmativas já implementadas na universidade, incluindo estes alunos no desenvolvimento de projetos de pesquisa relacionados a estas ações.

Estes programas são fomentados com bolsas do CNPq disponibilizadas à Unifesp ou com bolsas da própria instituição, oriundas de recursos próprios. Todas são distribuídas anualmente, conforme seleção e critérios de avaliação estabelecidos em edital específico para este fim.

Existem ainda os programas de bolsas de Iniciação à Extensão (PIBEX) para alunos em projetos de Extensão e bolsas da Embrapii (Empresa Brasileira de Pesquisa e Inovação Industrial) para pesquisa.

Existe ainda o Programa de Monitoria, em que bolsas são distribuídas aos alunos, vinculadas a projetos submetidos à concorrência e avaliação. Os projetos de monitoria visam a estabelecer procedimentos de apoio pedagógico aos alunos de determinadas unidades curriculares, de modo a lhes proporcionar melhor desempenho acadêmico.

Todos estes programas são amplamente divulgados no site da Unifesp, no endereço:

https://www.unifesp.br/reitoria/prograd/index.php/programas-institucionais.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

A Unifesp recebe, em suas dependências, estudantes de outras Universidades Federais, por meio do convênio ANDIFES, para realizar um período de estudos, geralmente de um ou dois semestres, conforme disponibilidade de vagas nas unidades curriculares. Há edital anual específico para esta finalidade, disponível em:

https://www.unifesp.br/reitoria/prograd/index.php/ensino-menu/mobilidade-academic a-sub-ensino.

O curso de Engenharia Química renova anualmente seu interesse de participação neste programa. Os deferimentos dos candidatos às disciplinas no curso estão condicionados a terem cursado o pré-requisito nas instituições de origem e a disponibilidade de vagas após o terceiro período de rematrícula.

O curso de Engenharia Química também tem oferecido duas vagas específicas (uma no integral e uma no noturno) para apátridas e pessoas portadoras de visto humanitário que sejam comprovadamente reconhecidos pelo governo brasileiro, de acordo com a Resolução do Conselho de Graduação nº 02 de 16 de outubro de 2019 que criou o Programa de Ingresso de Refugiados e Portadores de Visto Humanitário nos cursos de graduação da Unifesp. A solicitação de oferecimento destas vagas é realizada anualmente e a Comissão de Curso tem sido favorável a elas, deferindo-as.

A Unifesp aderiu ao Programa de Estudantes-Convênio de Graduação - PEC-G, instituído pelo Decreto nº 7.948, de 12 de março de 2013, que dispõe sobre o Programa de Estudantes-Convênio de Graduação (PEC-G). Este programa oferece oportunidades de formação superior a cidadãos de países em desenvolvimento com os quais o Brasil mantém acordos educacionais e culturais. Desenvolvido pelos ministérios das Relações Exteriores e da Educação, em parceria com universidades públicas - federais e estaduais - e particulares, o PEC-G seleciona estrangeiros, entre 18 e 25 anos, com ensino médio completo, para realizar estudos de graduação no país. O curso de Engenharia Química, por meio de sua Comissão de Curso, tem renovado anualmente o oferecimento de uma vaga adicional no curso integral aos estudantes deste programa.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

São selecionadas preferencialmente pessoas inseridas em programas de desenvolvimento socioeconômico, acordados entre o Brasil e seus países de origem. Os acordos determinam a adoção pelo aluno do compromisso de regressar ao seu país e contribuir com a área na qual se graduou.

14. GESTÃO ACADÊMICA DO CURSO

A Coordenação do Curso de Engenharia Química da Unifesp é exercida por docente do Departamento de Engenharia Química da Unifesp, por período de dois anos, prorrogável por mais dois. O coordenador é escolhido entre os membros da Comissão de Curso, que são eleitos pelo mesmo período de dois anos pelos docentes do Departamento. O Coordenador dispõe de posto de trabalho coletivo na sala da Câmara de Graduação, localizada no Prédio de Acesso, situado na Unidade José Alencar. A coordenação de curso tem dedicação e obrigações integrais ao curso, as quais incluem as atividades didáticas na graduação, pós-graduação (se existir o credenciamento a algum programa), além de projetos de pesquisa e extensão.

O Coordenador tem assento obrigatório junto à Câmara de Graduação do *Campus* Diadema (Instituto de Ciências Ambientais, Químicas e Farmacêuticas). Além disso, o Coordenador também deve participar das reuniões mensais do Conselho de Graduação da Unifesp (assento obrigatório) e, como docente, das reuniões do Departamento de Engenharia Química.

Em 2016 o Conselho Universitário aprovou uma Resolução (n° 124 de 12 de maio de 2016) que delegou poderes de decisão às Câmaras de Graduação dos *campi* da Unifesp, em assuntos que antes eram decididos exclusivamente no Conselho de Graduação. Em função desta mudança, a carga de trabalho das Câmaras de Graduação (e, portanto, dos Coordenadores) aumentou substancialmente, em assuntos ligados tipicamente às demandas estudantis (prazos de integralização dos cursos, deferimento e trancamento de matrículas, entre outros).

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

As reuniões ordinárias da Câmara de Graduação ocorrem com periodicidade mensal e reuniões extraordinárias podem ser convocadas sempre que necessário. As decisões envolvendo a confecção das grades horárias semestrais das Unidades Curriculares de todos os cursos do *Campus* Diadema passam por esta instância, bem como a confecção do Calendário Acadêmico anual do *Campus* em conformidade com o Calendário Geral anual da Unifesp. Ainda, nesse fórum são feitas decisões importantes sobre o número de vagas oferecidas pelos cursos para ingressantes, sobre a infraestrutura do *Campus* e tudo que é relacionado com a qualidade e o devido cumprimento dos Projetos Pedagógicos dos Cursos do *Campus* Diadema. Todas as atualizações e criações de Projetos Pedagógicos devem ser apreciadas nas reuniões da Câmara de Graduação e, em seguida, encaminhadas à Congregação para aprovação e ao Conselho de Graduação para sua homologação final.

As reuniões do Conselho de Graduação devem focar na atualização do Regimento Interno, além das questões relativas à qualidade do ensino, ENADE, processos de ingresso, programas de inclusão, avaliação e capacitação docente, internacionalização dos programas de graduação e inserção da Unifesp no rol das melhores universidades do Brasil e atualizações dos projetos pedagógicos dos cursos, entre outras atribuições.

As reuniões do Conselho de Graduação e da Comissão do Curso de Engenharia Química (CCEQ) também ocorrem mensalmente e, em caso de necessidade, são convocadas reuniões extraordinárias a qualquer tempo.

Conforme informado no item de apoio ao discente, a CCEQ mantém uma página de informações, contatos e fórum de notícias utilizando a plataforma Moodle de ensino à distância, à qual todos os alunos têm acesso por meio do endereço:

http://ead.unifesp.br/graduacao/course/view.php?id=665

Em consequência da política da Unifesp em relação à elaboração e atualização das páginas de internet, o Departamento de Engenharia Química criou dois grupos de trabalho, sendo um destes responsável pelo desenvolvimento do site do Curso de

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Engenharia Química e outro pelo site do Departamento de Engenharia Química. O Curso de Engenharia Química também mantém esta página em construção com informações importantes sobre os docentes, seus laboratórios e linhas de pesquisa, Matriz Curricular, informações sobre estágio e TCC, a qual pode ser conferida no endereço:

http://eq.diadema.sites.Unifesp.br/index.php

No ambiente Moodle da Coordenação do Curso podem ser conferidos os atuais membros integrantes da CCEQ, da Comissão de Estágios e da Comissão de TCC.

A Comissão de Curso possui comissões assessoras, com regulamentos e funções específicas dentro do curso. São elas:

- 1) Comissão de TCC (CTCC) Responsável pelas Unidades Curriculares de TCC-I e TCC-II. Assegura que todos os alunos matriculados tenham orientador e realizem seus projetos nos prazos e cronogramas estabelecidos. Define os avaliadores (TCC-I) e bancas do TCC-II a partir das indicações dos orientadores e alunos. Faz a divulgação de todas as normas para a elaboração dos TCC's, promove apresentações de divulgação extensionista e finalização do TCC para carregamento no repositório institucional;
- 2) Comissão de Estágios (CEEQ) Responsável pela verificação da documentação pertinente aos requisitos necessários para a realização do estágio. Verifica conflitos de horários e os termos de compromisso de estágio (TCE) obrigatórios e não obrigatórios e termos aditivos (TA). Designa os orientadores de estágio e recebe e avalia os relatórios de estágio.
- 3) Comissão de Egressos Realiza a localização e contato com os egressos do curso, disponibilizando-lhes formulários e incentivando-os a preenchê-los. Analisam os dados e confeccionam relatórios para o estabelecimento das diretrizes e políticas do curso, assim como para a análise destas informações pelo NDE do curso, para a proposição de melhorias nas atualizações do PPC do curso;

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

- 4) Comissão de Extensão Responsável pela concepção da extensão no PPC do curso e estabelecimento de uma política de extensão, incentivando os docentes na criação, elaboração e desenvolvimento de projetos extensionistas;
- 5) Núcleo Docente Estruturante Formado por docentes experientes do curso, coordenadores e ex-coordenadores de curso e de comissões assessoras. É responsável por pensar o curso, estabelecendo os caminhos e direcionamentos a seguir, em função das políticas governamentais para o ensino universitário público, das inovações e ferramentas pedagógicas e ainda em consequência das mudanças de paradigma na relação de ensino e aprendizagem, focando-se na excelência de formação social e profissional dos engenheiros químicos.

Todas as deliberações pertinentes a estas comissões assessoras, devem ser discutidas e aprovadas na Comissão de Curso.

Além destas comissões, com esta atualização do PPC do curso, será necessária a criação da comissão assessora Comissão de Atividades Complementares, que será responsável pelos procedimentos e prazos para organização e validação das atividades complementares realizadas pelos discentes que serão contabilizadas como carga horária para o cumprimento das 60 h de atividades complementares estabelecidas.

O atendimento a algumas demandas internas da Comissão de Curso é redistribuído, conforme o assunto, a membros específicos ou grupos de trabalho da CCEQ, de modo a evitar uma sobrecarga da coordenação. Atualmente, tem-se os seguintes grupos de trabalho (GT) na CCEQ para o atendimento a demandas próprias da coordenação, da Comissão de Curso e dos alunos:

 GT de aproveitamento de estudos - Avalia os processos de aproveitamento de estudos de alunos que já cursaram disciplinas em outros cursos universitários, assim como equivalências. Esses alunos são provenientes de transferências externas e internas e de processo de reingresso;

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

- 2) GT de Rematrícula Apoia a coordenação de curso nos três períodos do processo de rematrícula. Auxiliam nos deferimentos das inscrições de todos os alunos em todas as unidades curriculares (disciplinas), esclarecimento de dúvidas dos alunos e resolução de problemas durante este processo;
- 3) GT de Confecção da Grade Curricular semestral Confecção da grade semestral. Participação nas reuniões da Câmara de Graduação para verificação de conflitos de horários e disponibilidade de salas de aula e laboratórios entre todas as disciplinas do Campus. Discussão das grades junto às Coordenações de Cursos do Campus, assim como o seu envio aos departamentos, responsáveis pela atribuição de docentes às unidades curriculares nos dias e horários estabelecidos na grade;
- 4) GT de Assuntos relacionados ao ENADE e avaliações externas Responsável pela elaboração de apresentações e incentivo aos alunos para a realização da prova. Esclarecimento de dúvidas quanto à realização da prova e conscientização dos alunos em relação à estrutura física e pedagógica do curso. Também faz contato com os docentes, incentivando-os a dialogar e discutir com os alunos sobre a prova e suas questões;
- 5) GT de Atualização do Site e Moodle Responsável pela atualização das informações do curso e suas respectivas subcomissões no Moodle do curso;
- 6) GT de Avaliação das unidades curriculares Organiza e avalia semestralmente as questões e formulários a serem divulgados e preenchidos pelos alunos para avaliação das unidades curriculares do curso e seus respectivos docentes.

Estes grupos de trabalho podem ser criados e finalizados pela Comissão de Curso, de acordo com a demanda de trabalho.

Os atuais membros responsáveis pelos atendimentos relativos a esses assuntos podem ser conferidos no Moodle da Coordenação do curso. Além disso, os assuntos relativos ao Estágio Supervisionado e aos Trabalhos de Conclusão de Curso I e II são tratados em suas respectivas comissões assessoras, já citadas.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Adicionalmente à gestão acadêmica realizada pela CCEQ, há a gestão realizada pelo Departamento de Engenharia Química (DEQ) do *Campus* Diadema. A criação do departamento foi aprovada em 2016 e o conselho deste departamento começou a se reunir a partir de maio de 2017. O departamento foi criado a partir do Setor de Engenharia, que foi um desmembramento do Departamento de Ciências Exatas e da Terra, do *Campus* Diadema. O conselho (colegiado) deste departamento é formado por todos os seus integrantes, os quais têm direito à voto nas reuniões ordinárias bimensais. O departamento é responsável pelas atribuições de carga horária semestral aos docentes, pela elaboração e organização dos processos de contratação de novos professores permanentes ou substitutos e demais assuntos relacionados à gestão de pessoal docente, incluindo e promovendo a progressão docente. O departamento também é responsável por buscar e proporcionar ambiente e condições de trabalho adequadas aos docentes, tais como postos de trabalho e equipamentos fundamentais para o exercício da docência.

O Departamento de Engenharia Química encontra-se subordinado, atualmente, ao Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), o qual constitui a instância superior responsável pelo ensino, pesquisa e extensão no *Campus* Diadema da Unifesp. O chefe de Departamento tem assento na Congregação do Instituto de Ciências Ambientais, Químicas e Farmacêuticas.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

15. RELAÇÃO DO CURSO COM O ENSINO, A PESQUISA E A EXTENSÃO

Diferentes atividades podem ser realizadas pelos alunos de graduação do curso de Engenharia Química. As atividades podem estar ligadas ao ensino, pesquisa e extensão, e ser registradas por meio de certificados emitidos pela Instituição ou pelos docentes responsáveis pelas atividades.

Os alunos do curso de Engenharia Química têm a oportunidade de participar de atividades de ensino, por meio de projetos de monitoria para as diversas Unidades Curriculares oferecidas no *Campus*. As atividades de monitoria promovem o contato dos alunos com os monitores, o que traz benefícios para ambos. Além da consolidação do conteúdo das UCs, por meio do ensino, os alunos monitores podem desenvolver técnicas didáticas, responsabilidade e pró-atividade, o que pode despertar seu interesse na docência. Todas as UCs ministradas no *Campus* podem abrir editais anualmente para seleção de monitores, que podem ser remunerados, por meio de bolsa, ou voluntários.

O Programa institucional de Monitoria da Unifesp pode ser acessado pelo site:

https://www.unifesp.br/reitoria/prograd/programas-institucionais/monitoria

Este programa oferece bolsas aos programas inscritos e selecionados de acordo com os critérios estabelecidos.

A interação do aluno de graduação com a pesquisa ocorre pelos programas de iniciação científica e trabalhos de conclusão de curso, além das cooperações com os Programas de Pós-Graduação da Unifesp e intercâmbios com outras instituições nacionais e internacionais, por meio de projetos de pesquisa. Como já citado, a Unifesp oferece anualmente programas institucionais de bolsas de monitoria e iniciação científica. Também já foi mencionado que o *Campus* Diadema atualmente conta com programas de pós-graduação que complementam os cursos de graduação em termos de pesquisa científica, conhecimento e formação acadêmica. Os programas de pós-graduação em Análise Ambiental Integrada, Biologia Química, Ciências Farmacêuticas, Química - Ciência e Tecnologia da Sustentabilidade,

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Ecologia e Evolução, Engenharia e Ciência de Materiais, Ensino de Ciências e Matemática (PECMA), Engenharia Química, além do Mestrado profissional em Matemática têm cada vez mais complementado a carreira dos nossos alunos, proporcionando a consolidação dos conhecimentos e experiências acadêmicas.

A Unifesp entende que a extensão universitária é um processo educativo, cultural e científico, que articula o ensino e a pesquisa e viabiliza a relação transformadora entre a universidade e a sociedade.

A Pró-Reitoria de Extensão e Cultura (PROEC) da Unifesp promove, desenvolve, apoia, intermedia e incentiva a realização de atividades de extensão, por meio de programas e projetos sociais, cursos de extensão e eventos que atendam às necessidades da comunidade acadêmico-científica interna e externa. Desenvolve políticas de apoio ao estudante com bolsas de extensão, visando incentivar o aluno a participar desses processos, pois entende que a sala de aula não é o único espaço educativo possível, havendo a expansão além da sua estrutura física. Neste sentido, além de fortalecer sua formação, à medida que propicia ao aluno a aplicação de conhecimentos, contribui para a formação do indivíduo como cidadão.

A participação do aluno nas atividades de extensão ocorre por meio de UCs curricularizadas, programas e projetos com ações voltadas para a população local e regional e, eventualmente, nacional, oportunizando a troca de saberes entre docentes, discentes e sociedade.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

16. CURRICULARIZAÇÃO DA EXTENSÃO

A curricularização das Atividades de Extensão no Curso de Engenharia Química cumpre a Resolução CNE/CES nº 7/201820, que estabelece as Diretrizes para a Extensão na Educação Superior Brasileira e regulamenta o disposto na Meta 12.7 da Lei nº 13.005/2014²¹ (Plano Nacional da Educação 2014-2024), em que os cursos de graduação devem assegurar 10% de seus créditos curriculares em programas e projetos de extensão universitária em um processo interdisciplinar, político cultural, científico, tecnológico e que educacional. promova a interação transformadora entre as instituições de ensino superior e os outros setores da sociedade, por meio de produção, aplicação e disseminação do conhecimento, em articulação permanente com o ensino e a pesquisa.

Ainda, guiou-se a curricularização das Atividades de Extensão no curso de Engenharia Química de acordo com a Resolução Consu nº 13922 de 17/10/2017, que regulamenta as atividades extensionistas nos cursos de Graduação da Unifesp e Resolução Consu nº 19223 de 19/02/2021, que alterou parcialmente a Resolução Consu n° 139.

Os alunos ingressantes a partir do primeiro semestre de 2023 deverão cumprir essa carga horária de curricularização da extensão.

Para fomentar atividades que auxiliem o futuro profissional da engenharia química a atualizar-se com as ferramentas utilizadas pelo mercado de trabalho, as atividades de extensão permitem não apenas a difusão do conhecimento acadêmico para a sociedade interessada, mas também estimula que profissionais atuantes tragam sua experiência para os estudantes.

²⁰http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=104251-rces007-18 &category slug=dezembro-2018-pdf&Itemid=30192

²¹http://www.planalto.gov.br/ccivil 03/ ato2011-2014/2014/lei/l13005.htm#anexo

²²chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.unifesp.br/images/docs/consu/res olucoes/Resolucao139.pdf

²³chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.unifesp.br/images/docs/consu/res olucoes/2021/Resolu%C3%A7%C3%A3o_192_SEI_23089.000992.2021-81_0594703.pdf

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

As atividades extensionistas possibilitam aos alunos o desenvolvimento de habilidades e competências, como: iniciativa, comunicação, trabalho em equipe, sistematização dos conhecimentos e desenvolvimento pessoal. Isso facilita a inserção no mercado de trabalho de profissionais mais qualificados e que auxiliarão no desenvolvimento econômico e social do país. Nestas atividades o contato com diferentes profissionais permite a integração do ensino, pesquisa e sociedade, complementando a formação dos alunos e aproximando a Universidade da sociedade.

Os alunos de Engenharia Química poderão atuar em atividades como inclusão digital, empreendedorismo, saneamento, segurança doméstica, além da divulgação da instituição e do curso, buscando contribuir para o desenvolvimento do entorno da Unifesp, *Campus* Diadema.

A proposta incentiva todos os docentes do curso a oferecerem atividades extensionistas e busca atender a legislação e oferecer aos alunos pelo menos 10% da carga horária total do curso (426 h) às atividades extensionistas. Esta carga horária será alcançada por meio das seguintes unidades curriculares fixas:

- 1 Laboratório de Engenharia Química I (72 h),
- 2 Laboratório de Engenharia Química II (72 h),
- 3 Laboratório de Engenharia Química III (72 h),
- 4 Trabalho de Conclusão de Curso I (102 h),
- 5 Trabalho de Conclusão de Curso II (108 h).

Estas unidades curriculares têm carga horária 100% extensionistas e permanentes. Além disto, as unidades curriculares eletivas Ações Extensionistas I (36 h) e Ações Extensionistas II (36 h) serão implementadas e poderão ser ofertadas por todos os docentes do curso e permitirão que os alunos tenham a oportunidade de cursar carga horária extensionista ainda maior àquela exigida.

Os docentes responsáveis por estas unidades curriculares desenvolverão atividades extensionistas com os alunos da graduação, pautadas na Política Nacional de

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Extensão Universitária, que tem, na articulação da Extensão Universitária com as políticas públicas, as seguintes áreas de atuações prioritárias:

- I. Preservação e sustentabilidade do meio ambiente;
- II. Ampliação da oferta e melhoria da qualidade da educação básica;
- III. Melhoria da saúde e da qualidade de vida da população brasileira;
- IV. Melhoria do atendimento à criança, ao adolescente e ao idoso;
- V. Melhoria do programa nacional de educação nas áreas da reforma agrária;
- VI. Promoção do desenvolvimento cultural, em especial a produção e preservação de bens simbólicos e o ensino das artes;
- VII. Ampliação e fortalecimento das ações de democratização da ciência;
- VIII. Formação de mão de obra, qualificação para o trabalho, reorientação profissional e capacitação de gestores públicos.

As unidades curriculares que não constam na curricularização da extensão poderão oferecer atividades extensionistas, porém serão computadas como horas de atividades complementares.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

17. INFRAESTRUTURA

Atualmente a infraestrutura física da Unifesp *Campus* Diadema é composta por quatro unidades: unidade José de Filippi e unidade José Alencar (Edifício de Pesquisa, Complexo Didático e Prédio de Acesso),

A unidade José de Filippi possui uma área útil de 4.303 m², dividida em três pavimentos contendo 6 laboratórios multidisciplinares, 4 salas amplas para professores, 2 salas de reuniões, 2 laboratórios de informática com 30 computadores cada um, almoxarifado, 2 salas de apoio, 1 anfiteatro com capacidade para 80 pessoas, restaurante universitário, laboratórios de pesquisa e a Central Analítica Multiusuário.

A unidade José Alencar - Edifício de Pesquisa, possui uma área útil de 4281 m². O edifício é constituído pelos pavimentos inferior, térreo e mais seis andares, dedicados a laboratórios didáticos e de pesquisa na área tecnológica, com implantação da maior parte dos laboratórios dos docentes do curso de Engenharia Química. No 5° andar estão alocadas as Secretarias dos Departamentos e a de Pós-Graduação, a Diretoria Acadêmica, Infraestrutura, Sala de Reunião e Auditório e, no 6° andar, encontram-se alocados os funcionários técnicos terceirizados.

A unidade José Alencar - Complexo Didático possui uma edificação com dois pavimentos e uma área útil de 1357 m². Conta com 14 salas de aula teóricas além dos espaços destinados à Secretaria Acadêmica de Graduação e à Câmara de Graduação. A partir do início do primeiro semestre letivo de 2022 esta unidade passou a contar com novas salas de aula em uma nova edificação, o denominado *Prédio de Acesso*, o qual dispõe de pavimento térreo e três andares para as aulas de graduação, com 15 novas salas de aula. Este prédio tem 8 pavimentos com 9225 m² de área construída e as atividades acadêmicas de graduação foram centralizadas em um único endereço, dispondo de restaurante universitário, duas salas de informática com 54 lugares, auditórios e sala de docentes, além de espaços de convivência, a Farmácia Escola e um teatro.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

A Universidade Federal de São Paulo, *Campus* Diadema, disponibiliza a infraestrutura listada a seguir, incluindo os laboratórios destinados a atividades práticas para o curso de Graduação em Engenharia Química.

17.1 Biblioteca

A Biblioteca do *Campus* Diadema se encontra em novas e mais amplas instalações no andar térreo do prédio denominado Complexo Didático, ao lado do Prédio de Acesso, onde se concentra a maior parte das salas de aula. Seu acervo é composto por diversos tipos de documentos, abrangendo as áreas das Ciências Biológicas, Ciências Exatas e da Terra, Engenharias e Ciências da Saúde, e, em menor quantidade, outras áreas do conhecimento. O acervo é composto por aproximadamente 3.676 títulos de livros, além de 122 títulos de CDs e DVDs, 57 títulos de folhetos, 13 títulos de normas técnicas, 105 títulos de obras de referência e 2.227 títulos de TCCs, dissertações e teses, perfazendo um total de 22.329 exemplares.

Além do acervo físico, destacam-se as assinaturas das plataformas de *e-books* Minha Biblioteca e Biblioteca Virtual Pearson que oferecem acesso simultâneo ilimitado a mais de 20.000 títulos. A biblioteca também conta com o Repositório Institucional (RIUnifesp), que reúne toda a produção científica e acadêmica da Unifesp em formato digital, como teses, dissertações, trabalhos de conclusão de curso, artigos de periódicos, livros e capítulos de livros.

As demandas para a composição do acervo da biblioteca são estabelecidas, prioritariamente, a partir da bibliografia especificada nos Planos de Ensino das Unidades Curriculares dos Cursos de Graduação em andamento no *Campus*, e tem como base as especificações do Sistema Nacional de Avaliação da Educação Superior – SINAES – do Ministério da Educação. A biblioteca conta com a Comissão de Apoio à Biblioteca (CAB) para assessoria no processo de seleção e atualização do acervo.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

O sistema de gerenciamento da biblioteca é automatizado, possibilitando aos usuários a consulta, reserva e renovação remotamente. A biblioteca possui 4 computadores para consulta do seu acervo e pesquisa no Portal Capes, disponibilizando à comunidade Unifesp acesso a bases de dados referenciais e de texto completo, tais como, Web of Science, Scopus, BioOne, Engineering Village, SciFinder, Integrity, ERIC, entre outras.

A biblioteca possui 4.474 usuários ativos cadastrados, entre alunos de graduação e pós-graduação, docentes e servidores técnico-administrativos.

Entre os serviços oferecidos estão:

- Plataformas de livros eletrônicos;
- Empréstimo domiciliar aos usuários inscritos;
- Empréstimo inter-Unifesp;
- Empréstimo entre bibliotecas (de e para outras universidades);
- Comutação bibliográfica;
- Cursos e treinamentos de capacitação para usuários (pesquisa em base de dados);
- Orientação para pesquisa bibliográfica e para normatização de trabalhos de conclusão de curso da graduação e pós-graduação.

17.2 Restaurante Universitário

As unidades José Alencar (Prédio de Acesso) e José de Filippi (Eldorado) possuem Restaurantes Universitários (RUs) onde a comunidade acadêmica pode realizar suas refeições balanceadas (almoço e jantar) com o preço subsidiado para os estudantes de graduação e pós-graduação. Os estudantes pagam um valor fixo e a Universidade complementa o restante. A Comissão de Alimentação avalia a qualidade das refeições e gerencia os contratos com as empresas de fornecimento destas refeições. O cardápio diário é divulgado em:

https://www.unifesp.br/campus/dia/servicos/apoio/restaurante-universitario

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

17.3 Transporte entre as unidades do Campus

O *Campus* Diadema possui dois micro-ônibus que fazem periodicamente o percurso entre as unidades do *Campus* espalhadas por Diadema para o transporte de alunos, docentes e funcionários. Atualmente as paradas no percurso são:

- PRÉDIO DE VIDRO: Rua São Nicolau, 210;
- COMPLEXO DIDÁTICO: Dentro da Unidade Av. Conceição, 545 ao lado dos galpões;
- MARABRÁZ: Av. São José, 82 em frente à loja Marabráz;
- FLORESTAN: Pontos de ônibus em frente à Escola João Ramalho, nos dois sentidos;
- JOSÉ DE FILIPPI: Dentro da unidade Rua Acará, 102, Estacionamento (P2);
- TERMINAL: Av. Conceição, 176 ao lado do Edifício Plaza de España.

O itinerário e os horários dos micro-ônibus podem ser alterados e sua divulgação é realizada pelo *e-mail* institucional dos alunos e pelo site da Unifesp/Diadema:

https://www.unifesp.br/campus/dia/

17.4 Laboratório Multidisciplinar 1 (Química Orgânica Experimental)

Este laboratório é utilizado na Unidade Curricular de Química Orgânica Experimental, com o objetivo de complementar o aprendizado das aulas teóricas. A Unidade Curricular Química Orgânica Experimental apresenta os seguintes experimentos: (i) extração com solvente; (ii) extração quimicamente ativa; (iii) métodos gerais de destilação: por arraste a vapor, simples, fracionada e a pressão reduzida; (iv) métodos cromatográficos: cromatografia em coluna e em camada delgada; (v) métodos de purificação de compostos orgânicos (destilação e

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

recristalização); (vi) reações de preparação das classes representativas dos compostos orgânicos; (vii) experimento de química verde.

17.5 Laboratórios Multidisciplinares 2 e 3 (Química Geral Experimental, Química Analítica Geral II e Análise Instrumental)

Estes laboratórios são utilizados nas Unidades Curriculares de Química Geral Experimental e Química Analítica Geral II. A UC Química Geral Experimental tem como objetivo apresentar os conceitos iniciais para a compreensão do comportamento dos sistemas químicos. Nesse contexto, os Laboratórios Multidisciplinares 2 e 3 proporcionam as condições necessárias para a realização de experimentos que demonstram e abordam os aspectos teóricos tratados em aula, tais como: mudanças de estado, estequiometria, soluções, princípios de termodinâmica, eletroquímica e cinética, além de fornecer os princípios básicos de segurança em um laboratório.

A UC Química Analítica Geral II tem o objetivo de fornecer uma visão inicial e crítica da química analítica, envolvendo os processos de separação e identificação de espécies inorgânicas em solução aquosa. Além disso, fornece uma introdução à análise quantitativa. As atividades desenvolvidas nesses laboratórios visam consolidar os conceitos de equilíbrio químico, elaborar os conceitos de sensibilidade e seletividade analíticas, desenvolver de forma prática os conceitos de erros e tratamentos de dados analíticos, volumetria de neutralização, precipitação, oxidação-redução e complexação.

Os Laboratórios Multidisciplinares 2 e 3 são equipados com duas capelas de laboratório com sistema de exaustão, 4 banhos-maria, 4 balanças analíticas e 4 semi-analíticas, 2 pHmetros, 2 condutivímetros, 20 placas de aquecimento e agitação magnética, 1 kit de uso coletivo contendo reagentes sólidos, 20 kits de vidrarias para uso de grupos de três alunos por kit, contendo tubos de ensaios e

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

estante, *erlenmeyers*, funis, béqueres, vidro de relógio, bastões de vidro, provetas, buretas, papel de filtro e indicadores de pH.

17.6 Laboratório Multidisciplinar 4 (Física I, III e IV)

Este laboratório multidisciplinar disponibiliza a infraestrutura necessária para a realização de diversos experimentos didáticos relacionados com as Unidades Curriculares Física I, III e IV.

As atividades práticas da UC Física I consistem nos seguintes experimentos: (i) ensaios de medidas físicas; (ii) estudo de movimento e equilíbrio estático; (iii) plano inclinado; (iv) colchão de ar; (v) rotações; (vi) molas – lei de Hooke e (vii) estudo de corpo rígido.

A UC Física III apresenta os seguintes experimentos: (i) acelerador de Van Graff; (ii) estudo de resistividades; (iii) resistores, capacitores, placa de circuito e utilização do multímetro; (iv) lei de Ohm, (v) lei de Lenz; (vi) lei de indução de Faraday.

Em relação à UC Física IV, são apresentados os seguintes experimentos: (i) determinação da constante de Planck; (ii) interferômetro – interferência e difração e (iii) banco óptico – óptica geométrica.

17.7 Laboratório de Análise Instrumental

Este laboratório é utilizado na Unidade Curricular Análise Instrumental com o objetivo de fornecer uma introdução à análise instrumental. Neste laboratório os alunos desenvolvem o conhecimento prático sobre as principais técnicas analíticas instrumentais que englobam o campo da eletroanalítica, espectroanalítica, termoanalítica e técnicas de separação.

O laboratório é equipado com duas capelas de laboratório com sistema de exaustão, 10 kits de vidrarias para uso de grupos de três alunos por kit, 4 espectrofotômetros

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

UV/Vis, 1 cromatógrafo de troca iônica, 1 cromatógrafo com detector UV, 6 potenciômetros, 6 condutivímetros, 1 polarógrafo e 1 Karl Fischer. O laboratório também conta com 1 espectrômetro de absorção atômica (AAS), 1 analisador termogravimétrico simultâneo com um analisador térmico diferencial (TG/DTA), 1 cromatógrafo em fase gasosa com espectrômetro de massas acoplado (CG/MS) e 1 calorímetro exploratório diferencial (DSC).

Algumas das atividades práticas da UC de Eletroquímica Aplicada são ministradas no laboratório de Análise Instrumental, visando um conhecimento mais amplo e aplicado da área de corrosão. Para isso, o laboratório conta com (i) 5 potenciostatos/galvanostatos da marca Dropsens interfaciados com computadores, (ii) vidrarias específicas para ensaios eletroquímicos (células eletroquímicas, eletrodos de referência, eletrodos auxiliares e eletrodos de trabalho), (iii) multímetro digital e soluções de trabalho.

17.8 Laboratórios de Engenharia Química I e II

Este laboratório é utilizado pelas Unidades Curriculares Laboratório de Engenharia Química I e II, apresentando os seguintes módulos didáticos:

Perda de carga localizada e distribuída: O módulo experimental consiste em uma bancada móvel contendo dois reservatórios, duas bombas centrífugas e duas linhas de escoamento, uma composta por tubulações de distintos diâmetros com diferentes acidentes durante sua extensão e outra de tubulação de diferentes materiais e diâmetros de tubulação, utilizando água como fluido manométrico. Este módulo é utilizado para estudar o escoamento em tubos e determinar a perda de carga, comparando os resultados com os preditos por meio da literatura.

Medidores de vazão: O objetivo desse módulo é realizar uma calibração de medidores de vazão do tipo Venturi e placa de orifício, determinar o coeficiente de descarga de cada medidor e determinar a perda de carga nos medidores de vazão do tipo Venturi, placa de orifício e rotâmetro. O módulo experimental consiste em

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

uma bancada móvel contendo um reservatório de água, uma bomba e os medidores de vazão: Venturi, placa de orifício e um rotâmetro. Em diversos pontos da linha são tomadas medidas de pressão, por meio de um painel de manômetros.

Experimento de Reynolds horizontal e vertical: Visualização dos escoamentos laminar, transição e turbulento por injeção de corante e cálculo do número de Reynolds, comparando os resultados encontrados com o comportamento esperado. Os módulos consistem em bancadas móveis, contendo reservatório para água e para o corante, válvulas controladoras do fluxo e tubos de material transparente. O módulo de Reynolds horizontal possui ainda um painel de manômetros e dois tubos com diferentes diâmetros internos.

<u>Transferência de calor – condução</u>: O objetivo é a determinação experimental do coeficiente de transferência de calor convectivo médio. O módulo experimental consiste em uma bancada móvel contendo um banho termostático, sensores de temperatura e dois corpos de prova esféricos de diferentes materiais.

Curva binodal e Linhas de amarração de um sistema ternário: o objetivo é estudar o equilíbrio líquido-líquido por meio da determinação experimental da curva binodal e das linhas de amarração de sistemas ternários. Este experimento está dividido em duas partes: (i) a determinação da região heterogênea (delimitação da curva binodal), cujo módulo (móvel) consiste em dois reatores de vidro encamisados com sistema de agitação e um conjunto de frascos com buretas automáticas e (ii) determinação das linhas de amarração, cujo módulo (móvel) é composto por seis reatores de vidro encamisados com sistemas de agitação.

<u>Curva Característica de Bomba Centrífuga</u>: tem por objetivo ensinar o funcionamento de uma bomba centrífuga e determinar a sua curva característica. O módulo (móvel) é composto por uma bomba centrífuga, um reservatório de água e manômetros.

<u>Filtração a Vácuo</u>: o objetivo do experimento é determinar as características do bolo formado durante a filtração de suspensões de CaCO₃. Neste módulo (móvel), são determinadas a resistência ao meio filtrante e a resistência específica da torta,

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

utilizando-se para tanto um sistema de vácuo, que possibilita regular e controlar a pressão de vácuo e um sistema de filtração em vidro e acrílico.

<u>Análise Granulométrica e Peneiramento</u>: composto de um agitador de peneiras e um conjunto de peneiras. O objetivo é determinar a distribuição granulométrica de grânulos e determinar a eficiência de peneiras.

<u>Sedimentação</u>: O objetivo desse módulo é a determinação da área de um sedimentador contínuo a partir de ensaios em proveta utilizando carbonato de cálcio em suspensão. O módulo é composto por uma bancada móvel, onde as provetas podem ser postas e um sistema de iluminação composto por lâmpadas fluorescentes.

<u>Floculação – Jar Test</u>: O objetivo deste ensaio é verificar o efeito da concentração de floculante e do pH da suspensão coloidal no processo de coagulação/floculação. O módulo é composto por um sistema comercial composto por seis jarros de dois litros com sistema de agitação com velocidade controlada.

Adsorção: o módulo é utilizado para a obtenção da curva de ruptura (realizada em coluna) da adsorção de corantes em esferas de vidro. O módulo possui uma coluna de vidro acoplada a uma bomba peristáltica e uma mesa agitadora.

Trocador de calor de Placas: Os objetivos deste experimento são: realizar o balanço térmico; determinar o coeficiente global de transferência de calor experimental e teórico; avaliar o desempenho do trocador de calor para escoamento em corrente paralela e contra-corrente. O módulo é composto por um reservatório de água dotado de aquecimento, um trocador de calor comercial, uma bomba centrífuga, rotâmetros e um sistema de válvulas utilizadas para definição da vazão dos fluidos e do sentido do escoamento.

Escoamento em leito fixo (leitos porosos): O objetivo deste experimento é estudar o comportamento fluidodinâmico de sistemas sólido-fluidos por meio da medida experimental de gradiente de pressão e velocidade superficial do fluido. O módulo é composto por uma coluna de acrílico (recheada com o material a ser estudado, como esferas de vidro), uma bomba centrífuga e um painel de manômetros.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Leito fluidizado: O objetivo deste experimento é estudar a fluidização de leitos pela medida experimental de gradiente de pressão a cada velocidade superficial do fluido. O módulo é composto por duas colunas de acrílico (recheadas com o material a ser estudado, como esferas de vidro), uma bomba centrífuga, um compressor/soprador e dois painéis de manômetros.

<u>Destilação</u>: O objetivo desta prática é realizar a separação de componentes de uma mistura binária por meio do processo de destilação, além de caracterizar o processo de destilação. O módulo experimental consiste de uma torre de recheio, feita de vidro para facilitar a visualização do processo, de um refervedor e de um condensador.

O Laboratório de Engenharia Química I e II possui um espaço denominado "Sala de Apoio", dotado de alguns equipamentos de uso comum que são utilizados nas aulas práticas tais como balança analítica, balança semi-analítica, estufa com controle de temperatura, medidor de pH, condutivímetro, refratômetro, espectrofotômetro UV-Visível e uma unidade de osmose reversa. A sala de apoio é utilizada na preparação dos materiais para as aulas práticas. Diferentes materiais também estão disponíveis ao docente que desejar aprimorar ou criar outros módulos experimentais, como termopares, ferragens, ferramentas, além de diversos acessórios para tubulações, e material de acrílico, de PVC e vidraria.

17.9 Laboratório de Engenharia Química III

Este laboratório é utilizado nas unidades curriculares de Engenharia Bioquímica, Reatores Químicos I, Reatores Químicos II e Análise e Controle de Processos. Ele é equipado com um biorreator dotado de controle de pH, temperatura e oxigênio dissolvido e bombas dosadoras, mesa agitadora orbital termostatizada, estufa para crescimento microbiano, incubadora tipo BOD, sistema para reações enzimáticas (reatores, microrreatores e reatores tipo coluna em vidro borossilicato) e sistemas de

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

tratamento de efluentes, além de equipamentos auxiliares, como pHmetro, espectrofotômetro, estufa de secagem, bombas peristálticas e balança, entre outros.

Os experimentos de Reatores Químicos I e Reatores Químicos II são realizados no mesmo módulo. Esse módulo é constituído por: três (03) reatores de mistura (batelada ou CSTR), com volume aproximado de 500 mL, (diâmetro interno de 80 mm) cada, encamisados, que podem operar em batelada ou contínuo (CSTR), munidos de medidores de temperatura e com pontos para coleta de amostras entre reatores; um (01) reator tubular (PFR) modular encamisado, de volume aproximado de 500 mL (diâmetro interno de 30 mm) com todos os módulos, que podem operar com recheio ou sem recheio, munidos de medidores de temperatura e com pontos para coleta de amostras ao longo do reator; dois reservatórios (50 litros) para reagentes; duas bombas peristálticas; banho termostático; painel elétrico para os reatores de mistura; painel elétrico para o reator PFR; reservatório (50 litros) para a coleta dos resíduos gerados durante o experimento. Além disso, o sistema apresenta duas válvulas direcionadoras de fluxos reacionais para os reatores mistura ou para o PFR (essas válvulas ficam na parte traseira do equipamento).

No experimento de Reatores Químicos I é realizada a reação de saponificação com o objetivo de determinar a velocidade específica da reação experimental e checar a ordem da reação. Esse experimento é feito em um único reator CSTR, dos três dispostos no módulo, colocando um tampão na saída do mesmo para que a reação seja feita em um reator batelada.

No experimento de Reatores Químicos II é usado o sistema com os três reatores CSTRs em série para calcular a Distribuição de Tempo de Residência a partir da injeção do tipo pulso de um traçador no primeiro reator com o objetivo de determinar o desvio de idealidade em cada um dos reatores em questão. Neste experimento, além do módulo também é usado um espectrofotômetro para a leitura da absorbância das amostras de traçador coletadas.

O módulo de controle consiste basicamente em dois tanques em aço inox com agitador e aquecedor elétrico, reservatórios e bombas centrífugas para a

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

recirculação de água. Os tanques são dotados de transmissores de pressão diferencial para a medição de nível de líquido e sensores e transdutores de temperatura. Além disto, o sistema conta com sensores de vazão e inversores de frequência para a manipulação da vazão por ação direta sobre a bomba centrífuga. Os aquecedores são comandados por relés ativados por variador de potência. O sistema conta ainda com um controlador lógico programável (CLP) com 24 entradas e 16 saídas digitais, 4 entradas e 4 saídas analógicas, válvula solenóide, quadro de comando, registros manuais e demais acessórios de tubulação resistentes à temperatura e cabeamento para conexão CLP/computador.

O computador é utilizado para a supervisão e operação do módulo didático, bem como para o registro e análise dos dados coletados. O módulo foi desenvolvido para permitir a medição, a supervisão, o controle e o registro de dados de nível, temperatura e vazão. Além disso, o sistema permite alterar as estratégias de controle de modo a realizar experimentos com controle em malha aberta, *feedback* e *feedforward*, em cascata e multivariável.

Com relação às Unidades Curriculares Eletivas, algumas compartilham da infraestrutura dos laboratórios descritos, enquanto outras apresentam outros laboratórios específicos, como é o caso do Laboratório Multidisciplinar da área de Biologia.

17.10 Laboratório de Princípios de Automação e Instrumentação

Este laboratório é utilizado pelas Unidades Curriculares Princípios de Automação e Instrumentação e Eletrotécnica Aplicada à Engenharia Química, ambas disciplinas fixas do Curso de Engenharia Química da Unifesp. Os equipamentos já adquiridos e instalados são:

02 bancadas para simulações de circuitos elétricos trifásicos e monofásicos, por exemplo, ligação de motores elétricos, circuitos de controle e acionamento diversos

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

e circuitos de intertravamento. Esta bancada também possui módulo de conversão de corrente alternada para contínua e retificação.

01 bancada para simulação de circuitos eletrônicos de baixa potência. Nesta pode-se simular controles com lógica CLP (controlador lógico programável), circuitos eletrônicos para monitoração e controle de reatores e instalações químicas.

01 bancada para simulação de circuitos elétricos para instalações industriais e residenciais.

Todas as bancadas possuem também amperímetros, voltímetros (CA e CC), de maneira a facilitar que os dados experimentais sejam coletados e analisados com facilidade e segurança pelos alunos.

No laboratório de Princípios de Automação e Instrumentação são realizados os seguintes ensaios experimentais: verificação de correntes e tensões em circuitos CC e CA com cargas capacitivas, indutivas e resistivas; partida de motores trifásicos em estrela e em triângulo; implementação e teste de circuitos de intertravamento com o uso de contatores magnéticos e sensores; análises da conversão CA em CC, acionamento de motores CC com excitação por bobinas de campo ou de rotor; implementação e análises de circuitos de instalações industriais com lâmpadas e motores e finalmente construção e teste de um circuito de acionamento controlado por CLP.

17.11 Estrutura de Informática

A seguir são descritas as estruturas de laboratórios de informática, incluindo as estruturas físicas, de hardware e software.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

17.11.1 Laboratórios de Informática

Atualmente o *Campus* Diadema conta com 2 laboratórios de informática, com 30 computadores cada um, localizados na Unidade José de Filippi. Após a conclusão das obras do novo Prédio de Acesso junto à Unidade José Alencar - Complexo Didático, estarão disponíveis dois novos laboratórios de informática com 54 computadores cada um. Estes dois laboratórios da Unidade José de Filippi serão transferidos para os do Prédio de Acesso.

17.11.2 Softwares

A comunidade acadêmica da Unifesp conta com os serviços da Microsoft Office 365 Educacional, versão nuvem. A ferramenta permite acesso em qualquer máquina ou dispositivo, por meio de rede de internet.

A plataforma possui serviços como o Teams, Word, Excel e Power Point, para citar os mais populares. Além destes, toda a comunidade da Unifesp tem acesso ao OneDrive, o sistema de armazenamento em nuvem da Microsoft, com capacidade de 1 TB de armazenamento. Os usuários podem editar arquivos de forma colaborativa e concomitante, possibilitando, por exemplo, o desenvolvimento de trabalhos em grupo.

O procedimento de uso pode ser localizado em:

https://sti.unifesp.br/servicos/office-365-para-comunidade-unifesp

Toda a comunidade da Unifesp também conta com o G Suite for Education da Google. É uma ferramenta de comunicação da Google que disponibiliza gratuitamente para instituições públicas de ensino os recursos: Gmail, Google Drive, Classroom (sala de aula), Meet, Calendário, Docs, Forms, Slides, Hangout e Spreadsheets (planilhas). Todos esses recursos são acessados pelo e-mail

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

institucional @unifesp.br. Este email é criado a partir do cadastro de login dos discentes e validado por meio da intranet da Unifesp.

Os recursos disponibilizados trazem ferramentas específicas para o trabalho docente, como o gerenciamento de salas, criação de aulas, distribuição de tarefas e elaboração de questionário. Outras poderão também ser utilizadas nos setores administrativos, como as que permitem trabalhos colaborativos, pelas quais documentos podem ser editados simultaneamente em qualquer lugar e em tempo real.

Os serviços já disponibilizados pela Superintendência de Tecnologia da Informação ou novos podem ser encontrados em:

https://sti.unifesp.br/nossos-servicos

O Laboratório de Informática da Unifesp/*Campus* Diadema possui os seguintes softwares licenciados, além do MS Office 2016:

- 50 licenças do software AutoCAD® 2008 da AutoDesk;
- 150 licenças (na Unifesp) do simulador de processos ASPEN ONE;
- 150 licenças (na Unifesp) do simulador de processos UNISIM Design R430, da Honeywell.

A Unifesp tem realizado assinatura anual do software Statistica. Ele pode ser instalado por meio da intranet da Unifesp. A Unifesp também oferece à comunidade acadêmica o software Turnitin, para verificação de similaridade na realização de trabalhos acadêmicos e científicos.

Também foram feitas tratativas para a utilização, sem custos, do software AVEVA Process Simulation 2022. Esse software possibilita a realização de simulações tanto em regime permanente quanto dinâmicas, tendo aplicações, inclusive, em treinamento de operação de plantas industriais. Tendo sido utilizado inicialmente em Trabalhos de Conclusão de Curso e na pós-graduação, há possibilidades de incluir a sua utilização também em aulas de graduação.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

Além disto, também são disponibilizados softwares livres previamente instalados, como, por exemplo: LibreOffice, MiKTeX (edição de textos em LateX), COCO (CAPE-OPEN to CAPE-OPEN) Simulator, OpenFOAM (CFD), Blender, Freemat, Octave, Scilab, Oracle VM VirtualBox, Python, interfaces de programação CodeBlocks e Dev C++, compiladores C/C++.

Estes e outros softwares são usados nas Unidades Curriculares Algoritmos e Programação Computacional, Desenho Técnico, Física I, III e IV, Estatística, Fundamentos de Mecânica e Resistência dos Materiais, Fenômenos de Transporte I e II, Operações Unitárias I, II e III, Termodinâmica I e II, Cálculo Numérico, Reatores I e II, Engenharia Bioquímica, Eletrotécnica Aplicada à Engenharia Química, Princípios de Automação e Instrumentação, Modelagem e Análise de Sistemas, Síntese e Otimização de Processos, Simulação de Processos, Fundamentos de Bioquímica e Biologia Celular, Projeto de Processos Químicos, Projeto de Instalações Químicas, Análise e Controle de Processos, TCC-I, TCC-II, além de algumas UCs eletivas. Estas ferramentas possibilitam que os alunos aprendam os métodos de desenvolvimento e de análise de sistemas de relativa complexidade, possibilitando uma visão além dos conceitos básicos mostrados nas mencionadas Unidades Curriculares.

17.12 Laboratório Multidisciplinar 5 (Biologia Celular e Genética)

Trata-se de um laboratório utilizado nas Unidades Curriculares eletivas Biologia Celular e Genética, com o objetivo de estimular a curiosidade e contribuir para o aprendizado nas referidas Unidades Curriculares.

O laboratório é equipado com 20 microscópios utilizados nas práticas da Unidade Curricular Biologia Celular para a observação de conjuntos de lâminas preparados previamente e obtidos comercialmente (20 conjuntos) ou lâminas preparadas pelos próprios alunos, com o material específico a ser observado em cada aula. A utilização dos microscópios possibilita a observação de estruturas celulares

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

descritas na parte teórica, as diferenças entre células vegetais e animais e o processo de divisão celular.

O laboratório também apresenta a infraestrutura necessária para a realização de experimentos de extração do DNA de tecidos vegetais, contando com 10 banhos-maria, funis, tubos de ensaio, béqueres, bastões de vidro e provetas.

17.13 Oficina Mecânica

Conta atualmente com equipamentos específicos para a realização de ensaios relacionados às atividades práticas da Unidade Curricular Ciência e Engenharia dos Materiais e tem sido utilizada principalmente por alunos de Trabalho de Conclusão de Curso.

Neste local são realizados os seguintes experimentos: análise de contorno e tamanho de grão de materiais, verificação de incrustações na estrutura do material, preparação de amostras para verificação, via técnicas de Raios X, da estrutura cristalográfica de materiais, análises de planos de escorregamento em materiais. Para tal finalidade, foi adquirido um kit para preparação de corpos de prova para efetuar análise por metalografía de materiais. Este kit é composto por: uma cortadeira de amostra, uma máquina para polimento e ataque eletrolítico da superfície da amostra, um aparelho para limpeza de amostras, uma prensa embutidora para preparação de amostras e dois microscópios metalográficos para análise da estrutura das amostras. Com a construção do novo prédio didático da Unifesp/Campus Diadema, os equipamentos da área de materiais serão instalados em um espaço com capacidade para 25 alunos.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

18. CORPO SOCIAL

18.1 Docentes

Seguem na Tabela 9 as informações sobre área de formação e pós-graduação, assim como regime de dedicação na Unifesp dos docentes que atuam junto ao Curso de Engenharia Química.

Tabela 9. Corpo Docente.

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
	Docer	ites do Departam	ento de Engenharia	a Química	
1	Alessandra Pereira da Silva	Engenharia Química	Engenharia Química	Doutorado	DE
2	Alexandre Argondizo	Engenharia Química	Engenharia Química	Doutorado	DE
3	Anna Rafaela Cavalcante Braga	Engenharia de Alimentos	Engenharia e Ciência dos Alimentos	Doutorado	DE
4	Carlos Alexandre Moreira da Silva	Engenharia Química	Engenharia Química	Doutorado	DE
5	Christiane de Arruda Rodrigues	Engenharia Química	Engenharia Mecânica	Doutorado	DE
6	Classius Ferreira da Silva	Engenharia Química	Engenharia Química	Doutorado	DE
7	Cristiane Reis Martins	Engenharia Química	Ciências	Doutorado	DE
8	Eliezer Ladeia Gomes	Engenharia Química	Engenharia Química	Doutorado	DE

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
9	Fabiana Perrechil Bonsanto	Engenharia de Alimentos	Engenharia de Alimentos	Doutorado	DE
10	Gisele Atsuko Medeiros Hirata	Engenharia Química	Engenharia Química	Doutorado	DE
11	Iara Rocha Antunes Pereira Bresolin	Engenharia Química	Engenharia Química	Doutorado	DE
12	Igor Tadeu Lazzarotto Bresolin	Engenharia Química	Engenharia Química	Doutorado	DE
13	José Ermírio Ferreira de Moraes	Engenharia Química	Engenharia Química	Doutorado	DE
14	José Plácido	Engenharia Química	Engenharia Química	Doutorado	DE
15	Katia Ribeiro	Engenharia Química	Engenharia Química	Doutorado	DE
16	Laura Plazas Tovar	Engenharia Química	Engenharia Química	Doutorado	DE
17	Luciana Yumi Akisawa Silva	Engenharia Química	Engenharia Química	Doutorado	DE
18	Mariana Agostini de Moraes	Engenharia Química	Engenharia Química	Doutorado	DE
19	Matheus Boeira Braga	Engenharia de Alimentos	Engenharia Química	Doutorado	DE
20	Maximilian Serguei Mesquita	Engenharia Química	Engenharia Aeronáutica e Mecânica	Doutorado	DE
21	Milene Costa Codolo	Engenharia Têxtil	Engenharia Mecânica	Doutorado	DE

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
22	Priscilla Carvalho Veggi	Engenharia de Alimentos	Engenharia de Alimentos	Doutorado	DE
23	Rafael Mauricio Matricarde Falleiro	Engenharia Química	Engenharia Química	Doutorado	DE
24	Rafael Ramos de Andrade	Engenharia Química	Engenharia Química	Doutorado	DE
25	Ricardo de Freitas Fernandes Pontes	Engenharia Química	Engenharia Química	Doutorado	DE
26	Roberto Nasser Junior	Engenharia Química	Engenharia Química	Doutorado	DE
27	Rogério de Almeida Vieira	Engenharia Industrial Mecânica	Engenharia e Tecnologias Espaciais	Doutorado	DE
28	Rogério Scabim Morano	Engenheiro de Produção	Administração	Doutorado	DE
29	Romilda Fernandez Felisbino	Engenharia Química	Engenharia Química	Doutorado	DE
30	Saartje Hernalsteens	Engenharia de Alimentos	Engenharia de Alimentos	Doutorado	DE
31	Sania Maria de Lima	Engenharia Química	Engenharia Química	Doutorado	DE
32	Simone Georges El Khouri Miraglia	Engenharia Civil	Ciências	Doutorado	DE
33	Tiago Dias Martins	Engenharia Química	Engenharia Química	Mestrado	DE

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
34	Viktor Oswaldo Cárdenas Concha	Engenharia Química	Engenharia Química	Doutorado	DE
35	Werner Siegfried Hanisch	Engenharia Química	Hidráulica e Saneamento	Doutorado	DE
36	Wilson Hideki Hirota	Engenharia Química	Engenharia Química	Doutorado	DE

Docentes do Departamento de Química

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
1	Adriana Karla Cardoso Amorim Reis	Química	Química Orgânica	Doutorado	DE
2	Alessandro Rodrigues	Química Industrial	Química Orgânica	Doutorado	DE
3	Aline Klassen	Química	Ciências	Doutorado	DE
4	Aline Soriano Lopes	Química	Ciências (Química Analítica)	Doutorado	DE
5	Ana Paula de Azevedo Marques	Química	Química	Doutorado	DE
6	Andrea Maria Aguilar	Química	Química Orgânica	Doutorado	DE
7	Angerson Nogueira do Nascimento	Química	Ciências	Doutorado	DE

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
8	Carolina Vautier Teixeira Giongo	Química	Química	Doutorado	DE
9	Celso Molina	Química	Química	Doutorado	DE
10	Cristiano Raminelli	Química	Química Orgânica	Doutorado	DE
11	Daniel Rettori	Química	Química	Doutorado	DE
12	Dário Santos Júnior	Engenharia Química	Química	Doutorado	DE
13	Diogo de Oliveira Silva	Química Industrial	Fármaco e Medicamentos	Doutorado	DE
14	Diogo Silva Pellosi	Química	Química	Doutorado	DE
15	Eliana Maira Agostini Valle Akamatu	Química	Química (Química Analítica)	Doutorado	DE
16	Érica Aparecida Souza Silva	Química	Ciências	Doutorado	DE
17	Fabrício Ronil Sensato	Química	Química	Doutorado	DE
18	Fernanda Amaral de Siqueira	Química	Química Orgânica	Doutorado	DE
19	Fernanda Ferraz Camilo	Química	Química Orgânica	Doutorado	DE
20	Geórgia Christina Labuto Araújo	Química	Química	Doutorado	DE
21	Izilda Aparecida Bagatin	Química	Química (Química Inorgânica)	Doutorado	DE

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
22	Juliana Naozuka	Química	Química (Química Analítica)	Doutorado	DE
23	Laura Oliveira Péres Philadelphi	Química	Química (Físico-Química)	Doutorado	DE
24	Leonardo José Amaral de Siqueira	Química	Química (Físico-Química)	Doutorado	DE
25	Lúcia Codognoto de Oliveira	Química	Química (Química Analítica)	Doutorado	DE
26	Lúcia Kiyomi Noda	Química	Química (Físico-Química)	Doutorado	DE
27	Luciana Teresa Dias Cappelini	Agronomia, Química e Ciências Biológicas	Ciências (Química Analítica)	Doutorado	DE
28	Luciano Caseli	Química	Química	Doutorado	DE
29	Lucildes Pita Mercuri	Química Aplicada	Química (Química Analítica)	Doutorado	DE
30	Marcos Augusto Bizeto	Química	Química (Química Inorgânica)	Doutorado	DE
31	Marcus Vinicius Craveiro	Química	Química Orgânica	Doutorado	DE
32	Maria de Lourdes Leite de Moraes	Química Industrial	Química (Química Analítica)	Doutorado	DE

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
33	Mauro Aquiles La Scalea	Ciências, habilitação em Química	Química (Química Analítica)	Doutorado	DE
34	Miriam Uemi	Química	Ciências	Doutorado	DE
35	Nilson Antonio de Assunção	Química	Química Analítica	Doutorado	DE
36	Norberto Sanches Gonçalves	Química	Química (Físico-Química)	Doutorado	DE
37	Patrícia Sartorelli	Química	Química Orgânica	Doutorado	DE
38	Rafael Carlos Guadagnin	Química Industrial	Química	Doutorado	DE
39	Ricardo Alexandre Galdino da Silva	Química	Química	Doutorado	DE
40	Tereza da Silva Martins	Química	Química (Química Inorgânica)	Doutorado	DE
41	Thiago André Moura Veiga	Química	Química	Doutorado	DE
42	Tiago Luiz Ferreira	Química	Química (Química Analítica)	Doutorado	DE
43	Willian Hermoso	Química	Química (Físico-Química)	Doutorado	DE

Docentes do Departamento de Física

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
1	Alexandre Alves	Física	Física de Partículas Elementares	Doutorado	DE
2	Antonio Mihara	Física	Física	Doutorado	DE
3	Anderson Augusto Ferreira	Física	Física	Doutorado	DE
4	Fabiana Carvalho	Física	Física	Doutorado	DE
5	Ji il Kim	Física	Física	Doutorado	DE
6	Kanchan Pradeepkumar Khemchandani	Física	Física	Doutorado	DE
7	Leila Thomazelli Thieghi	Física	Física	Doutorado	DE
8	Lilia Coronato Courrol	Física	Tecnologia Nuclear	Doutorado	DE
9	Luciana Varanda Rizzo	Física	Física	Doutorado	DE
10	Marco André Ferreira Dias	Física	Física	Doutorado	DE
11	Maria Célia Leme da Silva	Matemática	Educação (Currículo)	Doutorado	DE
12	Marlete Pereira Meira de Assunção	Física	Física	Doutorado	DE
13	Nadja Simão Magalhães	Física	Ciências	Doutorado	DE
14	Rene Orlando Medrano Torricos	Física	Ciências, área de Física	Doutorado	DE
15	Rodolfo Valentim da Costa Lima	Física	Ciências	Doutorado	DE
16	Rose Clívia Santos	Física	Física	Doutorado	DE
17	Sarah Isabel Pinto Monteiro	Física	Física	Doutorado	DE

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
	do Nascimento Alves				

Docentes de Outros Departamentos

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
18	Adilson Viana Soares Junior	Geologia	Geologia e Geoquímica	Doutorado	DE
19	Ana Luisa Vietti Bitencourt	Geologia	Geografia Física	Doutorado	DE
20	Bruno Fiorelini Pereira	Ciências Biológicas	Biologia Celular e Molecular	Doutorado	DE
21	Cláudio Benedito Baptista Leite	Geologia	Geociências e Meio Ambiente	Doutorado	DE
22	Fabio Kummrow	Farmácia e Bioquímica	Toxicologia e Análises Toxicológicas	Doutorado	DE
23	José Guilherme Franchi	Geologia	Geoquímica e Geotectônica	Doutorado	DE
24	Isis Machado Hueza	Medicina Veterinária	Patologia Experimental e Comparada	Doutorado	DE
25	Ítale Luciane Cericato	Psicologia	Psicologia da Educação	Doutorado	DE
26	Ivone Silveira da Silva	Geologia	Química Analítica	Doutorado	DE
27	Joel Machado Júnior	Ciências Biológicas	Biologia Celular e Molecular	Doutorado	DE

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

N°	Nome	Área de Formação	Pós-Graduação	Titulação	Regime de Dedicação
28	Júlio Cezar Franco de Oliveira	Farmácia Bioquímica Modalidade Alimentos	Ciências Biológicas (Bioquímica)	Doutorado	DE
29	Lúcia Maria Armelin-Correa	Ciências Biológicas	Ciências (Genética)	Doutorado	DE
30	Maria Isabel Cardoso Alonso-Vale	Farmácia e Bioquímica	Ciências (Fisiologia)	Doutorado	DE
31	Mario Roberto Attanasio Júnior	Filosofia	Filosofia e Teoria Geral do Direito	Doutorado	DE
32	Mirian Chieko Shinzato	Geologia	Geologia	Doutorado	DE
33	Raphael Caio Tamborelli Garcia	Farmácia e Bioquímica	Toxicologia e Análises Toxicológicas	Doutorado	DE
34	Tiago Gabriel Correia	Ciências Biológicas	Fisiologia	Doutorado	DE

Observação: DE = Dedicação Exclusiva

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

18.2 Técnicos Administrativos e Educacionais

Segue na Tabela 10 as informações sobre o corpo técnico que atua junto ao Curso de Engenharia Química.

Tabela 10. Corpo Técnico-Administrativo.

N°	Nome	Cargo/Função	Local de atuação
1	Alexandre de Jesus Barros	Químico	NATEP
2	Andrezza de Santana Moreira	Bibliotecária	Biblioteca
3	Argélia Peixoto	Bibliotecária	Biblioteca
4	Bernadete de Faria	Técnica de Laboratório	NATEP
5	Caio Cesar de Sousa Ribeiro	Técnico de Laboratório	NATEP
6	Chrystine Satie Omori	Secretaria Executivo	Câmara de Graduação
7	Claudia Luiza de Oliveira	Médica	NAE
8	Cláudia Naomi Abe	Química	NATEP
9	Cláudio Gomes Salles	Técnico de Laboratório	NATEP
10	Cristiane Gonçalves da Silva	Bióloga	NATEP
11	Cristiane Rodrigues da Silva	Administrador	Secretaria da Graduação
12	Daniel da Costa Silva	TAE	Secretaria da Graduação

N°	Nome	Cargo/Função	Local de atuação
13	Daniela Foppa Fuzari	Bibliotecária	Biblioteca
14	Denise Maria Camargo Andreoli	Assistente Administrativo	Secretaria da Graduação
13	Elias Horácio da Silva	Assistente Administrativo	Secretaria da Graduação
15	Ednelza Sarmento Garcia Gushiken	Bibliotecária	Biblioteca
16	Elenice dos Santos Alves Monteiro	Técnica de Laboratório	NATEP
17	Érika Correia Silva	Psicóloga	NAE
18	Erika Pereira de Magalhães	Assistente Administrativo	Biblioteca
19	Francisco de Assis Lourenco Ribeiro	Técnico de Laboratório	NATEP
20	Giovanni Mietto Foltran	Assistente de Laboratório	NATEP
21	Glauber Carpegiane Moreira	Técnico de Laboratório	NATEP
22	Hadassa Vaz Nascimento	Técnica de Laboratório	NATEP
23	Jessica Martins Camargo	Técnica de Laboratório	NATEP
24	Juliana dos Santos Oliveira	TAE	Secretaria da Graduação
25	Lethicia Ribeiro Henriques	Técnica de Laboratório	NATEP
26	Liliane Giglio Canelhas de Abreu Segeti	TAE	Secretaria da Graduação

N°	Nome	Cargo/Função	Local de atuação
27	Mariana Medeiros de Freitas	Intérprete de Libras	NAE
28	Michele Hidalgo de Carvalho	Assistente Administrativo	Biblioteca
29	Palloma Mendes Conceição	Assistente de Laboratório	NATEP
30	Reginaldo Alexandre Valle da Silva	Farmacêutico	NATEP
31	Reginaldo Neto Junior	Assistente Administrativo	Secretaria da Graduação
32	Rodolfo Marinho	Técnico de Laboratório	NATEP
33	Rodrigo Blanques de Gusmao	Biólogo	NATEP
34	Rogeria Cristina Zauli	Técnica de Laboratório	NATEP
36	Rosangela Teixeira Penna	Bióloga	NATEP
37	Rosângela Aparecida da Silva Oliveira	Assistente Administrativo	Secretaria da Graduação
38	Sonia Regina dos Santos	Assistente Administrativo	Secretaria da Graduação
39	Tatiane Nassar Britos	Assistente de Laboratório	NATEP
40	Vanessa Leite dos Santos	Assistente de Laboratório	NATEP
41	Verônica Carolina da Silva Janini	Assistente Social	NAE
42	Wilson Dias Segura	Biólogo	NATEP

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

19. REFERÊNCIAS

BRASIL. Imprensa Nacional. **Portaria Nº 86, de 20 de Janeiro de 2021.** Sistematiza parâmetros e procedimentos para renovação de reconhecimento de cursos superiores, nas modalidades presencial e a distância. Disponível em: <u>PORTARIA Nº 86, DE 28 DE JANEIRO DE 2021 - DOU - Imprensa Nacional</u>. Acesso em: 25 de março de 2022.

BRASIL. Imprensa Nacional. **Portaria Nº 921, de 27 de Dezembro de 2018.** Renova o Reconhecimento de Cursos. Disponível em: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/57219916/do1-2018-12-28-portaria-n-921-de-27-de-dezembro-de-2018-57219465. Acesso em: 25 de março de 2022.

BRASIL. Ministério da Educação. Conselho Nacional de Educação. Conselho Pleno. **Resolução nº 2, de 15 de junho de 2012.** Estabelece as Diretrizes Curriculares Nacionais para a Educação Ambiental. Disponível em: http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=1098 8-rcp002-12-pdf&category_slug=maio-2012-pdf&Itemid=30192. Acesso em: 08 de julho de 2016.

BRASIL. Ministério da Educação. Conselho Nacional de Educação. Conselho Pleno. **Resolução nº 1, de 30 de maio de 2012.** Estabelece as Diretrizes Curriculares Nacionais para a Educação em Direitos Humanos. Disponível em: http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=1088 9-rcp001-12&category slug=maio-2012-pdf&Itemid=30192. Acesso em: 08.jul.2016.

BRASIL. **Portal e-MEC.** Disponível em: http://emec.mec.gov.br/emec/consulta-cadastro/detalhamento/d96957f455f6405d14c 6542552b0f6eb/NTkx/9f1aa921d96ca1df24a34474cc171f61/ODg=

BRASIL. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. **Decreto nº 5.626, de 22 de dezembro de 2005.** Regulamenta a Lei no 10.436, de 24 de abril de 2002, que dispõe sobre a Língua Brasileira de Sinais - Libras, e o art. 18 da Lei no 10.098, de 19 de dezembro de 2000. Disponível em: https://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2005/Decreto/D5626.htm. Acesso em: 03 de junho de 2016.

BRASIL. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. **Lei nº 9.795, de 27 de abril de 1999.** Dispõe sobre a educação ambiental, institui a Política Nacional de Educação Ambiental e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil-03/leis/19795.htm. Acesso em: 08 de julho de 2016.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

BRASIL. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. **Decreto nº 4.281, de 25 de junho de 2002.** Regulamenta a Lei nº 9.795, de 27 de abril de 1999, que institui a Política Nacional de Educação Ambiental, e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil_03/decreto/2002/D4281.htm. Acesso em: 08 de julho de 2016.

BRASIL. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. **Decreto nº 7.948, de 12 de março de 2013.** Regulamenta o Programa de Estudantes-Convênio de Graduação - PEC-G. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/decreto/d7948.htm. Acesso em: 25 de abril de 2022.

BRASIL. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. **Decreto nº 12.711, de 29 de agosto de 2012.** Dispõe sobre o ingresso nas universidades federais e nas instituições federais de ensino técnico de nível médio e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12711.htm. Acesso em: 25 de abril de 2022.

BRASIL. **Resolução nº 10.406, de 18 de dezembro de 2018.** Estabelece as Diretrizes para a Extensão na Educação Superior Brasileira. Disponível em: https://normativasconselhos.mec.gov.br/normativa. Acesso em: 25 de março de 2022.

BRASIL. **Resolução nº 2, de 24 de abril de 2019.** Institui as Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia. Disponível em: http://portal.mec.gov.br/component/content/article?id=12991. Acesso em: 25 de março de 2022.

IBGE. **Cidades e Estados, 2022.** Disponível em https://www.ibge.gov.br/cidades-e-estados/sp/sao-paulo.html. Acesso em 27/04/2022.

Portal r7, 2020. Disponível em: https://noticias.r7.com/economia/grande-sao-paulo-concentra-23-da-populacao-e-33-da-renda-nacional-25062020. Acesso em 27/04/2022.

SÃO PAULO (Estado). Secretaria de Desenvolvimento Regional. **Plano de Desenvolvimento Urbano Integrado (PDUI).** Disponível em: https://pdui.sp.gov.br/. Acesso em 06.jul.2016.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

UNIFESP. **Números e Indicadores Unifesp.** Universidade Federal de São Paulo, 2022a. Disponível em

https://www.unifesp.br/reitoria/indicadores/indicadores-qualidade/96-graduacao-indicadores-do-mec-2. Acesso em 25/04/2022.

UNIFESP. **Números e Indicadores Unifesp.** Universidade Federal de São Paulo, 2022b. Disponível em: https://www.unifesp.br/reitoria/indicadores/graduacao. Acesso em 25/04/2022.

UNIFESP. **PDI-2016-2020 da Unifesp**. Disponível em: https://www.unifesp.br/reitoria/proplan/portal-pdi. Acesso em: 08.jul.2016.

UNIFESP. **PDI-2021-2025 da Unifesp**. Disponível em: https://www.unifesp.br/reitoria/proplan/portal-pdi. Acesso em: 08.jul.2016.

UNIFESP. Regimento Interno da Pró-Reitoria de Graduação da Universidade Federal de São Paulo, 2014. Disponível em: http://www.unifesp.br/reitoria/prograd/legislacao-normas/normas-e-resolucoes/regimentos/regimento-interno-da-prograd-pdf. Acesso em 26/04/2022.

Pró-Reitoria de Graduação Curso de Engenharia Química Campus Diadema

ANEXO I

Este Anexo apresenta a matriz de transição da matriz curricular 2017. Apesar da matriz 2023 não necessitar desta matriz de transição, há ainda alunos do período 2007 a 2016 no curso e que precisam destas equivalências.

Matriz de transição para os alunos que ingressaram de 2007 a 2016

Todos os alunos, com ingresso anterior à 2017, foram migrados para o currículo do curso de Engenharia Química que foi instituído em 2017. Algumas Unidades Curriculares já cursadas pelos alunos no currículo anterior a 2017, foram devidamente validadas na Matriz Curricular de 2017, conforme uma tabela de equivalências proposta pelo NDE e aprovada pela CCEQ na reforma do PPC ocorrida em 2017.

Na Tabela I, pode-se observar um quadro resumo das relações de equivalência entre as Unidades Curriculares da Matriz aprovada em 2017 e as Unidades Curriculares da Matriz anterior a 2017.

Nas Tabelas II e III, são apresentadas as equivalências individualizadas para cada Unidade Curricular das Matrizes Curriculares implantadas em 2017, períodos Integral e noturno, respectivamente, em relação às Unidades Curriculares cursadas na Matriz Curricular anterior a 2017.

Pró-Reitoria de Graduação Curso de Engenharia Química *Campus* Diadema

Tabela I: Resumo das equivalências entre Unidades Curriculares da matriz 2007 e Unidades Curriculares da matriz 2017

UC na Matriz Curricular 2007	UC na Matriz Curricular 2017
Química das Transformações	Química Geral, Química Geral Experimental e Físico-Química
Biologia Celular e Bioquímica Estrutural	Fundamentos de Bioquímica e Biologia Celular
Química Analítica Qualitativa e Química Analítica Quantitativa Instrumental	Química Analítica Geral I, Química Analítica Geral II e Análise Instrumental
Introdução à Química Orgânica	Química Orgânica
Análise de Sistemas	Cálculo IV e Modelagem e Análise de Sistemas
Simulação e Otimização de Processos	Síntese e Otimização de Processos e Simulação de Processos
Fenômenos de Transporte I	Metodologia Científica
Mecânica Geral e Resistência dos Materiais	Fundamentos de Mecânica e Resistência dos Materiais
Fenômenos de Transporte I e Fenômenos de Transporte II	Laboratório de Engenharia Química I
Operações Unitárias I, Operações Unitárias II e Operações Unitárias III	Laboratório de Engenharia Química II
Engenharia Bioquímica, Reatores Químicos II e Análise e Controle de Processos	Laboratório de Engenharia Química III
Eletrotécnica Geral	Princípios de Automação e Instrumentação e Eletrotécnica Aplicada à Engenharia Química
Geometria Analítica e Álgebra Linear	Fundamentos de Álgebra Linear e Geometria Analítica (FALGA)

Tabela II: Detalhamento das equivalências por UC e por Termo, período integral. Esta equivalência será concedida apenas para ingressantes de 2007 a 2016.

UC	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
1º TERMO								
Cálculo I	Fixa	1º	72					Não houve modificação
Física I	Fixa	1º	72	Física I	Fixa	2°	72	Alteração do Termo da UC
Geometria Analítica	Fixa	1°	36	Fundamentos de Álgebra Linear e Geometria Analítica (FALGA)	Fixa	1º	72	A união da UC Geometria Analítica com a UC Álgebra Linear é equivalente à nova UC FALGA. Para obter a equivalência, o aluno precisa ter cursado ambas as UC citadas. Caso contrário, o aluno deverá cursar a nova UC, FALGA.
Outraina dan				Química Geral	Fixa	1º	72	Desmembramento em três UC, alteração de Termo e inserção de
Química das Transformaçõe s	Fixa	1°	18 0	Química Geral Experimental	Fixa	1º	72	pré-requisito. Se cumprida, não haverá necessidade de cursar as UCs que a equivalem. Se não cumprida, o aluno deverá cursar
3				Físico-Química	Fixa	3°	36	as três UCs equivalentes citadas.
Estrutura da Matéria	Fixa	1º	72	Estrutura da Matéria	Fixa	2°	72	Alteração do Termo da UC.
Biologia Celular	Fixa	1°	72	Fundamentos de Bioquímica e Biologia Celular	Fixa	7°	72	Opção (1): a união de Biologia Celular (1º Termo) com Bioquímica Estrutural (2º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar a nova UC.
				Biologia Celular	Eleti va		72	Opção (2) : se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Geologia	Fixa	1º	72	Geologia	Eleti va		72	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
2º TERMO	•	•	•				•	
Cálculo II	Fixa	2º	72	Cálculo II	Fixa	2°	72	Inserção de conteúdo sobre resolução de sistemas de Equações Diferenciais Ordinárias (menos de 25%) e inserção de pré-requisito adicional (FALGA). A nova UC é considerada

UC	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
								equivalente à UC antiga, mas recomenda-se aos alunos da EQ que ainda não a cursaram que se inscrevam em Turmas EQ ou EN devido ao novo conteúdo.
Física II	Fixa	2°	72	Física II	Eleti va		72	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la. O conteúdo de Movimento Periódico, Ondas Mecânicas, Interferência de Ondas e Som passou a ser visto em Física IV.
Álgebra Linear	Fixa	2°	36	Fundamentos de Álgebra Linear e Geometria Analítica (FALGA)	Fixa	1°	72	A união da UC Geometria Analítica com a UC Álgebra Linear é equivalente à nova UC FALGA. Para obter a equivalência, o aluno precisa ter cursado ambas as UC citadas. Se não cumprida, o aluno deverá cursar a nova UC FALGA.
Introdução à Química Orgânica	Fixa	2°	10 8	Química Orgânica	Fixa	2°	72	Novo nome, redução de carga horária e alteração de pré-requisitos. Se cumprida, não haverá necessidade de cursar a UC que a equivale. Caso contrário, o aluno deverá cursar a nova UC.
Bioquímica Estrutural	Fixa	2°	72	Fundamentos de Bioquímica e Biologia Celular	Fixa	7°	72	Opção (1) : a união de Biologia Celular (1º Termo) com Bioquímica Estrutural (2º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar a nova UC.
				Bioquímica Estrutural	Eleti va		72	Opção (2) : se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Genética	Fixa	2°	72	Genética	Eleti va		72	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Introdução à Ecologia	Fixa	2°	72	Introdução à Ecologia	Eleti va		72	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
3° TERMO								
Cálculo III	Fixa	3°	72	Cálculo III	Fixa	3°	72	Alteração de pré-requisitos.
Física III	Fixa	3°	72	Física III	Fixa	3°	72	Alteração de pré-requisitos.

uc	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
Algoritmos e Programação Computacional	Fixa	3°	72	Algoritmos e Programação Computacional	Fixa	1°	72	Exclusão de pré-requisito e alteração de Termo.
Mecânica Geral	Fixa	3°	36	Fundamentos de Mecânica e Resistência dos Materiais	Fixa	3°	72	O cumprimento das UCs Mecânica Geral (3º Termo) e Resistência dos Materiais (5º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumpridas, o aluno deverá cursar a nova UC.
Estatística Aplicada	Fixa	3°	10 8	Estatística	Fixa	2°	72	Novo nome, redução de carga horária e mudança do Termo da UC.
Química Orgânica Experimental	Fixa	3°	10 8	Química Orgânica Experimental	Fixa	3°	108	Alteração de pré-requisito: Química Orgânica.
Introdução à Engenharia Química	Fixa	3°	72	Introdução à Engenharia Química	Fixa	2°	36	Redução de carga horária; exclusão de pré-requisito e alteração do Termo da UC.
4° TERMO		•	•					
Desenho Técnico	Fixa	4°	72	Desenho Técnico	Fixa	1º	54	Redução de carga horária e alteração do Termo da UC.
Física IV	Fixa	4°	72	Física IV	Fixa	4°	72	Alteração de conteúdo: inclusão de Movimento Periódico, Ondas Mecânicas, Interferência de Ondas e Som, e exclusão de Relatividade, Física Nuclear e Cosmologia. O conteúdo excluído poderá ser visto em uma UC Eletiva de Física Avançada. Se cumprida, será considerada equivalente. Caso contrário, o aluno deverá cursar a UC com o novo conteúdo.
Cálculo Numérico	Fixa	4°	72	Cálculo Numérico	Fixa	2°	72	Alteração do Termo da UC, inclusão de conteúdo e alteração de pré-requisitos. Se cumprida, será considerada equivalente. Caso contrário, o aluno deverá cursar a UC com o novo conteúdo.
Fenômenos de Transporte I	Fixa	4°	10 8	Fenômenos de Transporte I	Fixa	4°	72	Desmembramento da parte teórica com consequente redução de carga horária; alteração de pré-requisito. A parte prática será vista na nova UC, Laboratório de Engenharia Química I. Se

UC	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
								cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UC desmembradas.
				Laboratório de Engenharia Química I	Fixa	6°	54	O cumprimento das UC (das matrizes 2007-2016) Fenômenos de Transporte I (4º Termo) e Fenômenos de Transporte II (5º Termo) é equivalente à UC Laboratório de Engenharia Química I. Para obter a equivalência, o aluno precisa ter cursado ambas as UC citadas. Se não cumprida, o aluno deverá cursar as novas UC desmembradas.
				Metodologia Científica	Fixa	1º	36	Se cumprida, será considerada equivalente à UC Metodologia Científica (assunto abordado nas aulas práticas). Caso contrário, o aluno deverá cursar a nova UC.
Balanço de Massa e Energia	Fixa	4°	72	Balanço de Massa e Energia	Fixa	3°	72	Alteração de pré-requisitos e alteração no Termo da UC.
Termodinâmica I	Fixa	4°	72	Termodinâmica I	Fixa	4°	72	Alteração de pré-requisitos.
5° TERMO								
				Operações Unitárias I	Fixa	5°	72	Desmembramento da parte teórica com consequente redução de carga horária. A parte prática será vista na nova UC, Laboratório de Engenharia Química II. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Operações Unitárias I	Fixa	5°	10 8	Laboratório de Engenharia Química II	Fixa	7°	54	O cumprimento das três UCs (das matrizes 2007-2016) Operações Unitárias I (5º Termo), Operações Unitárias II (6º Termo) e Operações Unitárias III (7º Termo) é equivalente à UC Laboratório de Engenharia Química II. Para obter a equivalência, o aluno precisa ter cursado duas das três UC citadas. Se não cumpridas ou se cumprida apenas uma UC, o aluno deverá cursar a nova UC Laboratório de Engenharia Química II.

uc	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
Ciências e Engenharia de Materiais	Fixa	5°	72	Ciência e Engenharia dos Materiais	Fixa	4°	72	Alteração do nome e do Termo da UC.
Química				Química Analítica Geral I	Fixa	3°	72	O cumprimento das UC Química Analítica Qualitativa (5º Termo) e Química Analítica Quantitativa Instrumental (6º Termo), das
Analítica Qualitativa	Fixa	5°	10 8	Química Analítica Geral II	Fixa	4º	72	matrizes 2007-2016, é equivalente às três novas UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UC citadas.
Quantativa				Análise Instrumental	Fixa	5°	72	Se não cumprida, o aluno deverá cursar as novas UCs.
	Fixa		10 8	Fenômenos de Transporte II	Fixa	5°	72	Desmembramento da parte teórica com consequente redução de carga horária; alteração de conteúdo; alteração de pré-requisito. A parte prática será vista na nova UC, Laboratório de Engenharia Química I. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Fenômenos de Transporte II		5°		Laboratório de Engenharia Química I	Fixa	6°	54	O cumprimento das UCs (das matrizes 2007-2016) Fenômenos de Transporte I (4º Termo) e Fenômenos de Transporte II (5º Termo) é equivalente à UC Laboratório de Engenharia Química I. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Resistência dos Materiais	Fixa	5°	72	Fundamentos de Mecânica e Resistência dos Materiais	Fixa	3°	72	O cumprimento das UC Mecânica Geral (3º Termo) e Resistência dos Materiais (5º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar a nova UC. Poderá ser oferecida na forma antiga excepcionalmente no 1S2018.
Termodinâmica II	Fixa	5°	10 8	Termodinâmica II	Fixa	5°	72	Redução de carga horária e alteração de conteúdo. Se cumprida, será considerada equivalente.
Processos Químicos Industriais	Fixa	5°	72	Processos Químicos Industriais	Fixa	8°	36	Redução de carga horária; alteração do Termo da UC; reformulação da ementa; alteração de pré-requisitos. Se cumprida, será considerada equivalente.
6° TERMO								

uc	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
	Fixa			Operações Unitárias II	Fixa	6°	72	Desmembramento da parte teórica com consequente redução de carga horária. A parte prática será vista na nova UC, Laboratório de Engenharia Química II. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Operações Unitárias II		6°	10 8	Laboratório de Engenharia Química II	Fixa	7°	54	O cumprimento das três UCs (das matrizes 2007-2016) Operações Unitárias I (5º Termo), Operações Unitárias II (6º Termo) e Operações Unitárias III (7º Termo) é equivalente à UC Laboratório de Engenharia Química II. Para obter a equivalência, o aluno precisa ter cursado duas das três UC citadas. Se não cumpridas ou se cumprida apenas uma UC, o aluno deverá cursar a nova UC Laboratório de Engenharia Química II.
Análise de Sistemas	Fixa	6°	72	Modelagem e Análise de Sistemas	Fixa	6°	72	Novo nome; remanejamento de parte do conteúdo em outras UCs (Cálculo II e Cálculo IV); reformulação de conteúdo; alteração de pré-requisitos. Se cumprida, não haverá
Cictornac				Cálculo IV	Fixa	4°	72	necessidade de cursar as UCs que a equivalem. Se não cumprida, o aluno deverá cursar as duas novas UCs.
Química		6°		Química Analítica Geral I	Fixa	3°	72	O cumprimento das UC Química Analítica Qualitativa (5º Termo)
Analítica Quantitativa	Fixa		10 8	Química Analítica Geral II	Fixa	4°	72	e Química Analítica Quantitativa Instrumental (6º Termo), das matrizes 2007-2016, é equivalente as três novas UCs. Para obter
Instrumental				Análise Instrumental	Fixa	5°	72	a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar as novas UCs.
Fenômenos de Transporte III	Fixa	6°	72	Fenômenos de Transporte III	Fixa	6°	72	Alteração de pré-requisito. Se cumprida, será considerada equivalente.
Administração	Fixa	6°	72	Administração	Fixa	5°	72	Alteração do Termo da UC; alteração de conteúdo; novo nome do pré-requisito: Estatística.
Reatores Químicos I	Fixa	6°	72					Não houve modificação
7° TERMO								

UC	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação			
				Operações Unitárias III	Fixa	7°	72	Desmembramento da parte teórica com consequente redução de carga horária; alteração de pré-requisitos. A parte prática será vista em uma nova UC, Laboratório de Engenharia Química II. Se cumprida, será considerada equivalente.			
Operações Unitárias III	Fixa	7°	10 8	Laboratório de Engenharia Química II	Fixa	7°	54	O cumprimento das três UCs (das matrizes 2007-2016) Operações Unitárias I (5º Termo), Operações Unitárias II (6º Termo) e Operações Unitárias III (7º Termo) é equivalente à UC Laboratório de Engenharia Química II. Para obter a equivalência, o aluno precisa ter cursado duas das três UCs citadas. Se não cumpridas ou se cumprida apenas uma UC, o aluno deverá cursar a nova UC Laboratório de Engenharia Química II.			
Controle da Poluição	Fixa	7°	72	Controle da Poluição	Eleti va		72	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.			
Eletrotécnica	rotécnica	72	Eletrotécnica Aplicada à Engenharia Química	Fixa	5°	36	Desmembramento em duas novas UCs; alteração do Termo da UC. Se cumprida, não haverá necessidade de cursar as UCs que				
Geral				Princípios de Automação e Instrumentação	Fixa	5°	36	a equivalem. Se não cumprida, o aluno deverá cursar as duas novas UCs.			
Simulação e Otimização de	Fixa	7°	72	Síntese e Otimização de Processos	Fixa	7°	72	Novo nome; desmembramento de parte do conteúdo; alteração de pré-requisitos; alteração do Termo da UC. Se cumprida, não haverá necessidade de cursar as UCs que a equivalem. Se não			
Processos				Simulação de Processos		cumprida, o aluno deverá cursar as duas UCs.					
Economia	Fixa	7°	72	Economia	Fixa	6°	72	Alteração do Termo da UC.			
Reatores Químicos II	Fiixa	7°	72	Reatores Químicos II	Fixa	7°	72	Alteração do pré-requisito da UC.			

UC	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
				Laboratório de Engenharia Química III	Fixa	8°	72	O cumprimento das três UCs (das matrizes 2007-2016) Reatores Químicos II (7º Termo), Engenharia Bioquímica (9º Termo) e Análise e Controle de Processos (9º Termo), é equivalente à UC Laboratório de Engenharia Química III. Para obter a equivalência, o aluno precisa ter cursado as UCs (das matrizes 2007-2016) Engenharia Bioquímica (9º Termo) ou Análise e Controle de Processos (9º Termo). Se não cumpridas, o aluno deverá cursar a nova UC Laboratório de Engenharia Química III.
Eletroquímica Aplicada	Fixa	7°	72	Eletroquímica Aplicada	Fixa	7°	54	Redução de carga horária.
8° TERMO		,					,	
Estágio Supervisionado	Fixa	8°	24 0	Estágio Supervisionado	Fixa	9°	240	Alteração do Termo e pré-requisito da UC.
9° TERMO		•	•					
Análise e				Análise e Controle de Processos	Fixa	8°	72	Desmembramento da parte teórica com consequente redução de carga horária; alteração do Termo da UC; novo nome do pré-requisito: Modelagem e Análise de Sistemas. A parte prática será vista na nova UC, Laboratório de Engenharia Química III. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Controle de Processos	Fixa	9°	10 8	Laboratório de Engenharia Química III	Fixa	8°	72	O cumprimento das três UCs (das matrizes 2007-2016) Reatores Químicos II (7º Termo), Engenharia Bioquímica (9º Termo) e Análise e Controle de Processos (9º Termo), é equivalente à UC Laboratório de Engenharia Química III. Para obter a equivalência, o aluno precisa ter cursado as UCs (das matrizes 2007-2016) Engenharia Bioquímica (9º Termo) ou Análise e Controle de Processos (9º Termo). Se não cumpridas, o aluno deverá cursar a nova UC Laboratório de Engenharia Química III.

UC	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
Processos para Tratamento de Efluentes	Fixa	9°	72	Processos para Tratamento de Efluentes	Fixa	9°	72	Inclusão de conteúdo; alteração de pré-requisitos. Se cumprida, será considerada equivalente.
Projeto de Processos Químicos	Fixa	9°	72	Projeto de Processos Químicos	Fixa	9°	72	Alteração de pré-requisitos. Se cumprida, será considerada equivalente.
				Engenharia Bioquímica	Fixa	8°	54	Desmembramento da parte teórica com consequente redução de carga horária; alteração do Termo da UC; alteração de pré-requisitos. A parte prática será vista na nova UC, Laboratório de Engenharia Química III. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Engenharia Bioquímica	Fixa	9°	72	Laboratório de Engenharia Química III	Fixa	8°	72	O cumprimento das três UCs (das matrizes 2007-2016) Reatores Químicos II (7º Termo), Engenharia Bioquímica (9º Termo) e Análise e Controle de Processos (9º Termo) é equivalente à UC Laboratório de Engenharia Química III. Para obter a equivalência, o aluno precisa ter cursado as UCs (das matrizes 2007-2016) Engenharia Bioquímica (9º Termo) ou Análise e Controle de Processos (9º Termo). Se não cumpridas, o aluno deverá cursar a nova UC Laboratório de Engenharia Química III.
Segurança Industrial	Fixa	9°	36	Segurança Industrial	Fixa	9°	36	Alteração de pré-requisitos. Se cumprida, será considerada equivalente.
10° TERMO								
Empreendedori smo na Engenharia Química	Fixa	10°	36	Empreendedoris mo na Engenharia Química	Eleti va		36	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Projeto de Instalações Químicas	Fixa	10°	72					Não houve modificação.

UC	Fixa / Eleti va	Ter mo	СН	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
Ética e Direito Ambiental	Fixa	10°	36	Ética e Direito Ambiental	Eleti va		36	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Trabalho de Conclusão de	Fixa	10°	14	Trabalho de Conclusão de Curso I (TCC-I)	Fixa	9°	72	Desmembramento em duas UCs; alteração de Termo; alteração de pré-requisito. Se cumprida, não haverá necessidade de cursar
Curso (TCC)	гіха	10°	4	Trabalho de Conclusão de Curso II (TCC-II)	Fixa	10°	72	as UC que a equivalem. Se não cumprida, o aluno deverá cursar as duas UCs equivalentes citadas.

Tabela III: Detalhamento das equivalências por UC e Termo, período noturno. Esta equivalência será concedida apenas para ingressantes de 2007 a 2016.

UC	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	C	Observação
1º TERMO								
Cálculo I	Fixa	1º	7 2					Não houve modificação
Geometria Analítica	Fixa	1°	3 6	Fundamentos de Álgebra Linear e Geometria Analítica (FALGA)	Fixa	1°	7 2	A união da UC Geometria Analítica com a UC Álgebra Linear é equivalente à nova UC FALGA. Para obter a equivalência, o aluno precisa ter cursado ambas as UC citadas. Se não cumprida, o aluno deverá cursar a nova UC FALGA.
Estrutura da Matéria	Fixa	1º	7 2	Estrutura da Matéria	Fixa	2°	7 2	Alteração do Termo da UC.
Biologia Celular	Fixa	1°	7 2	Fundamentos de Bioquímica e Biologia Celular	Fixa	8°	7 2	Opção (1) : a união de Biologia Celular (1º Termo) com Bioquímica Estrutural (3º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar a nova UC.
				Biologia Celular	Eletiv a		7 2	Opção (2) : se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Geologia	Fixa	1º	7 2	Geologia	Eletiv a		7 2	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
2º TERMO								
Física I	Fixa	2°	7 2					Não houve modificação
Química das			1	Química Geral	Fixa	1º	7 2	Desmembramento em três UCs, alteração de Termo e inserção de pré-requisito. Se cumprida, não haverá necessidade de cursar as
Transformações	Fixa	2°	8	Química Geral Experimental	Fixa	1°	7 2	UCs que a equivalem. Se não cumprida, o aluno deverá cursar as três UCs equivalentes citadas.

UC	Fixa / Eleti va	Ter mo	C	UC equivalente	Fixa / Eleti va	Ter mo	C	Observação
				Físico-Química	Fixa	3°	3 6	
Cálculo II	Fixa	2°	7 2	Cálculo II	Fixa	2°	7 2	Inserção de conteúdo sobre resolução de sistemas de Equações Diferenciais Ordinárias (menos de 25%) e inserção de pré-requisito adicional (FALGA). A nova UC é considerada equivalente à UC antiga, mas recomenda-se aos alunos da EQ que ainda não a cursaram que se inscrevam em Turmas EQ ou EN devido ao novo conteúdo.
Álgebra Linear	Fixa	2°	3 6	Fundamentos de Álgebra Linear e Geometria Analítica (FALGA)	Fixa	1°	7 2	A união da UC Geometria Analítica com a UC Álgebra Linear é equivalente à nova UC FALGA. Para obter a equivalência, o aluno precisa ter cursado ambas as UC citadas. Se não cumprida, o aluno deverá cursar a nova UC FALGA.
Genética	Fixa	2°	7 2	Genética	Eletiv a		7 2	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
3° TERMO			,					
Física II	Fixa	3°	7 2	Física II	Eletiv a		7 2	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la. O conteúdo de Movimento Periódico, Ondas Mecânicas, Interferência de Ondas e Som passou a ser visto em Física IV.
Introdução à Química Orgânica	Fixa	3°	1 0 8	Química Orgânica	Fixa	5°	7 2	Novo nome, redução de carga horária e alteração de pré-requisitos. Se cumprida, não haverá necessidade de cursar a UC que a equivale. Caso contrário, o aluno deverá cursar a nova UC.
Bioquímica Estrutural	Fixa	3°	7 2	Fundamentos de Bioquímica e Biologia Celular	Fixa	8°	7 2	Opção (1): a união de Biologia Celular (1º Termo) com Bioquímica Estrutural (3º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar a nova UC.
				Bioquímica Estrutural	Eletiv a		2	Opção (2) : se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.

UC	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	C	Observação
Introdução à Ecologia	Fixa	3°	7 2	Introdução à Ecologia	Eletiv a		7 2	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Cálculo III	Fixa	3°	7 2	Cálculo III	Fixa	3°	7 2	Alteração de pré-requisitos.
Mecânica Geral	Fixa	3°	3 6	Fundamentos de Mecânica e Resistência dos Materiais	Fixa	4°	7 2	O cumprimento das UC Mecânica Geral (3º Termo) e Resistência dos Materiais (4º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar a nova UC.
4º TERMO								
Física III	Fixa	4°	7 2	Física III	Fixa	3°	7 2	Alteração de pré-requisitos e do Termo da UC.
Química Orgânica Experimental	Fixa	4°	1 0 8	Química Orgânica Experimental	Fixa	6°	1 0 8	Alteração de pré-requisito: Química Orgânica; alteração do Termo da UC.
Algoritmos e Programação Computacional	Fixa	4°	7 2	Algoritmos e Programação Computacional	Fixa	2°	7 2	Exclusão de pré-requisito e alteração de Termo.
Introdução à Engenharia Química	Fixa	4°	7 2	Introdução à Engenharia Química	Fixa	3°	3 6	Redução de carga horária; exclusão de pré-requisito e alteração do Termo da UC.
Resistência dos Materiais	Fixa	4°	7 2	Fundamentos de Mecânica e Resistência dos Materiais	Fixa	4°	7 2	O cumprimento das UC Mecânica Geral (3º Termo) e Resistência dos Materiais (4º Termo) é equivalente à nova UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar a nova UC.
5° TERMO	,							
Física IV	Fixa	5°	7 2	Física IV	Fixa	4°	7 2	Alteração de conteúdo: inclusão de Movimento Periódico, Ondas Mecânicas, Interferência de Ondas e Som, e exclusão de Relatividade, Física Nuclear e Cosmologia. O conteúdo excluído poderá ser visto em uma UC Eletiva de Física Avançada. Se cumprida, será considerada equivalente. Caso contrário, o aluno deverá cursar a UC com o novo conteúdo.

UC	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	C H	Observação
Estatística Aplicada	Fixa	5°	1 0 8	Estatística	Fixa	3°	7 2	Novo nome, redução de carga horária e mudança do Termo da UC.
				Fenômenos de Transporte I	Fixa	5°	7 2	Desmembramento da parte teórica com consequente redução de carga horária; alteração de pré-requisito. A parte prática será vista na nova UC, Laboratório de Engenharia Química I. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Fenômenos de Transporte I	Fixa	5°	1 0 8	Laboratório de Engenharia Química I	Fixa	7°	5 4	O cumprimento das UCs (das matrizes 2007-2016) Fenômenos de Transporte I (5º Termo) e Fenômenos de Transporte II (6º Termo) é equivalente à UC Laboratório de Engenharia Química I. Para obter a equivalência, o aluno precisa ter cursado ambas as UC citadas. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
				Metodologia Científica	Fixa	1°	3 6	Se cumprida, será considerada equivalente à UC Metodologia Científica (assunto abordado nas aulas práticas). Caso contrário, o aluno deverá cursar a nova UC.
Balanço de Massa e Energia	Fixa	5°	7 2	Balanço de Massa e Energia	Fixa	4°	7 2	Alteração de pré-requisitos e alteração no Termo da UC.
Termodinâmica I	Fixa	5°	7 2	Termodinâmica I	Fixa	5°	7 2	Alteração de pré-requisitos.
6° TERMO								
Operações Unitárias I	Fixa	6°	1 0	Operações Unitárias I	Fixa	6°	7 2	Desmembramento da parte teórica com consequente redução de carga horária. A parte prática será vista na nova UC, Laboratório de Engenharia Química II. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Official as I			8	Laboratório de Engenharia Química II	Fixa	8°	5 4	O cumprimento das três UC (das matrizes 2007-2016) Operações Unitárias I (6º Termo), Operações Unitárias II (7º Termo) e Operações Unitárias III (8º Termo) é equivalente à UC Laboratório de Engenharia Química II. Para obter a equivalência, o aluno

uc	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	C H	Observação
								precisa ter cursado duas das três UCs citadas. Se não cumpridas ou se cumprida apenas uma UC, o aluno deverá cursar a nova UC Laboratório de Engenharia Química II.
Fenômenos de	Five	6°	1	Fenômenos de Transporte II	Fixa	6°	7 2	Desmembramento da parte teórica com consequente redução de carga horária; alteração de conteúdo; alteração de pré-requisito. A parte prática será vista na nova UC, Laboratório de Engenharia Química I. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Transporte II	Fixa	0°	8	Laboratório de Engenharia Química I	Fixa	7°	5 4	O cumprimento das UCs (das matrizes 2007-2016) Fenômenos de Transporte I (5º Termo) e Fenômenos de Transporte II (6º Termo) é equivalente à UC Laboratório de Engenharia Química I. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
Termodinâmica II	Fixa	6°	1 0 8	Termodinâmica II	Fixa	6°	7 2	Redução de carga horária e alteração de conteúdo. Se cumprida, será considerada equivalente.
Processos Químicos Industriais	Fixa	6°	7 2	Processos Químicos Industriais	Fixa	9°	3 6	Redução de carga horária; alteração do Termo da UC; reformulação da ementa; alteração de pré-requisitos. Se cumprida, será considerada equivalente.
7° TERMO	•							
Desenho Técnico	Fixa	7°	7 2	Desenho Técnico	Fixa	2º	5 4	Redução de carga horária e alteração do Termo da UC.
Cálculo Numérico	Fixa	7°	7 2	Cálculo Numérico	Fixa	3°	7 2	Alteração do Termo da UC, inclusão de conteúdo e alteração de pré-requisitos. Se cumprida, será considerada equivalente. Caso contrário, o aluno deverá cursar a UC com o novo conteúdo.
Operações Unitárias II	Fixa	7°	1 0 8	Operações Unitárias II	Fixa	7°	7 2	Desmembramento da parte teórica com consequente redução de carga horária. A parte prática será vista na nova UC, Laboratório de Engenharia Química II. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.

uc	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	C H	Observação
				Laboratório de Engenharia Química II	Fixa	8°	5 4	O cumprimento das três UCs (das matrizes 2007-2016) Operações Unitárias I (6º Termo), Operações Unitárias II (7º Termo) e Operações Unitárias III (8º Termo) é equivalente à UC Laboratório de Engenharia Química II. Para obter a equivalência, o aluno precisa ter cursado duas das três UC citadas. Se não cumpridas ou se cumprida apenas uma UC, o aluno deverá cursar a nova UC Laboratório de Engenharia Química II.
Fenômenos de Transporte III	Fixa	7°	7 2	Fenômenos de Transporte III	Fixa	7°	7 2	Alteração de pré-requisito. Se cumprida, será considerada equivalente.
Controle da Poluição	Fixa	7°	7 2	Controle da Poluição	Eletiv a		7 2	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Estágio Supervisionado	Fixa	7°	2 4 0	Estágio Supervisionado	Fixa	10°	2 4 0	Alteração do Termo e pré-requisito da UC.
8° TERMO								
Ciências e Engenharia de Materiais	Fixa	8°	7 2	Ciência e Engenharia dos Materiais	Fixa	5°	7 2	Alteração do nome e do Termo da UC.
Química			1	Química Analítica Geral I	Fixa	4°	7 2	O cumprimento das UCs Química Analítica Qualitativa (8º Termo) e Química Analítica Quantitativa Instrumental (9º Termo), das matrizes
Analítica Qualitativa	Fixa	8°	0 8	Química Analítica Geral II	Fixa	5°	7 2	2007-2016, é equivalente às três novas UCs. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar as novas UCs.
				Análise Instrumental	Fixa	7°	7 2	
Operações Unitárias III	Fixa	8°	1 0 8	Operações Unitárias III	Fixa	8°	7 2	Desmembramento da parte teórica com consequente redução de carga horária; alteração de pré-requisitos. A parte prática será vista em uma nova UC, Laboratório de Engenharia Química II. Se cumprida, será considerada equivalente.

UC	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	C H	Observação
				Laboratório de Engenharia Química II	Fixa	8°	5 4	O cumprimento das três UC (das matrizes 2007-2016) Operações Unitárias I (6º Termo), Operações Unitárias II (7º Termo) e Operações Unitárias III (8º Termo) é equivalente à UC Laboratório de Engenharia Química II. Para obter a equivalência, o aluno precisa ter cursado duas das três UCs citadas. Se não cumpridas ou se cumprida apenas uma UC, o aluno deverá cursar a nova UC Laboratório de Engenharia Química II.
Eletrotécnica Geral	Fixa	8°	7 2	Eletrotécnica Aplicada à Engenharia Química	Fixa	10°	3	Desmembramento em duas novas UCs; alteração do Termo da UC. Se cumprida, não haverá necessidade de cursar as UCs que a equivalem. Se não cumprida, o aluno deverá cursar as duas novas
Gerai			2	Princípios de Automação e Instrumentação	Fixa	10°	3 6	UCs.
Segurança Industrial	Fixa	8°	3 6	Segurança Industrial	Fixa	12°	3 6	Alteração de pré-requisitos. Se cumprida, será considerada equivalente.
9° TERMO								
Análise de Sistemas	Fixa	9°	7 2	Modelagem e Análise de Sistemas	Fixa	9°	7 2	Novo nome; remanejamento de parte do conteúdo em outras UCs (Cálculo II e Cálculo IV); reformulação de conteúdo; alteração de pré-requisitos. Se cumprida, não haverá necessidade de cursar as
Oisternas				Cálculo IV	Fixa	4º	7 2	UCs que a equivalem. Se não cumprida, o aluno deverá cursar as duas novas UCs.
Administração	Fixa	9°	7 2	Administração	Fixa	8°	7 2	Alteração do Termo da UC; alteração de conteúdo; novo nome do pré-requisito: Estatística.
Reatores Químicos I	Fixa	9°	7 2	Reatores Químicos I	Fixa	7°	7 2	Alteração do Termo da UC.
Química Analítica Quantitativa Instrumental	Fixa	9°	1 0 8	Química Analítica Geral I	Fixa	3°	7 2	O cumprimento das UC Química Analítica Qualitativa (8º Termo) e Química Analítica Quantitativa Instrumental (9º Termo), das matrizes 2007-2016, é equivalente às três novas UC. Para obter a equivalência, o aluno precisa ter cursado ambas as UCs citadas. Se não cumprida, o aluno deverá cursar as novas UCs.

UC	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	CH	Observação
				Química Analítica Geral II	Fixa	4°	7 2	
				Análise Instrumental	Fixa	5°	7 2	
10° TERMO								
Simulação e Otimização de	Fixa	10°	7 2	Síntese e Otimização de Processos	Fixa	10°	7 2	Novo nome; desmembramento de parte do conteúdo; alteração de pré-requisitos; alteração do Termo da UC. Se cumprida, não haverá necessidade de cursar as UCs que a equivalem. Se não cumprida,
Processos				Simulação de Processos	Fixa	11°	7 2	o aluno deverá cursar as duas UCs.
Economia	Fixa	10°	7 2	Economia	Fixa	9°	7 2	Alteração do Termo da UC.
				Reatores Químicos II	Fixa	8°	7 2	Alteração do pré-requisito da UC.
Reatores Químicos II	Fixa	10°	7 2	Laboratório de Engenharia Química III	Fixa	8°	7 2	O cumprimento das três UCs (das matrizes 2007-2016) Reatores Químicos II (10° Termo), Engenharia Bioquímica (10° Termo) e Análise e Controle de Processos (12° Termo) é equivalente à UC Laboratório de Engenharia Química III. Para obter a equivalência, o aluno precisa ter cursado as UCs (das matrizes 2007-2016) Engenharia Bioquímica (9° Termo) ou Análise e Controle de Processos (9° Termo). Se não cumpridas, o aluno deverá cursar a nova UC Laboratório de Engenharia Química III.
Eletroquímica Aplicada	Fixa	10°	7 2	Eletroquímica Aplicada	Fixa	10°	5 4	Redução de carga horária.

uc	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
Engenharia Bioquímica	Fixa	10°	7 2	Engenharia Bioquímica	Fixa	9°	5 4	Desmembramento da parte teórica com consequente redução de carga horária; alteração do Termo da UC; alteração de pré-requisitos. A parte prática será vista na nova UC, Laboratório de Engenharia Química III. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
				Laboratório de Engenharia Química III	Fixa	11°	7 2	O cumprimento das três UCs (das matrizes 2007-2016) Reatores Químicos II (10° Termo), Engenharia Bioquímica (10° Termo) e Análise e Controle de Processos (12° Termo), é equivalente à UC Laboratório de Engenharia Química III. Para obter a equivalência, o aluno precisa ter cursado as UCs (das matrizes 2007-2016) Engenharia Bioquímica (9° Termo) ou Análise e Controle de Processos (9° Termo). Se não cumpridas, o aluno deverá cursar a nova UC Laboratório de Engenharia Química III.
11° TERMO								
Projeto de Processos Químicos	Fixa	11°	7 2	Projeto de Processos Químicos	Fixa	11°	7 2	Alteração de pré-requisitos. Se cumprida, será considerada equivalente.
Empreendedori smo na Engenharia Química	Fixa	11°	3 6	Empreendedori smo na Engenharia Química	Eletiv a		3 6	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Ética e Direito Ambiental	Fixa	11°	3 6	Ética e Direito Ambiental	Eletiv a		3 6	Se cumprida, será considerada Eletiva. Caso contrário, o aluno não precisará cursá-la.
Trabalho de Conclusão de Curso I (TCC-I) 12º TERMO	Fixa	11°	7 2	Trabalho de Conclusão de Curso I (TCC-I)	Fixa	11°	7 2	Alteração de pré-requisito.

uc	Fixa / Eleti va	Ter mo	C H	UC equivalente	Fixa / Eleti va	Ter mo	СН	Observação
Análise e Controle de Processos	Fixa	12°	1 0 8	Análise e Controle de Processos	Fixa	11°	7 2	Desmembramento da parte teórica com consequente redução de carga horária; alteração do Termo da UC; novo nome do pré-requisito: Modelagem e Análise de Sistemas. A parte prática será vista na nova UC, Laboratório de Engenharia Química III. Se cumprida, será considerada equivalente. Se não cumprida, o aluno deverá cursar as novas UCs desmembradas.
				Laboratório de Engenharia Química III	Fixa	11°	7 2	O cumprimento das três UCs (das matrizes 2007-2016) Reatores Químicos II (10° Termo), Engenharia Bioquímica (10° Termo) e Análise e Controle de Processos (12° Termo) é equivalente à UC Laboratório de Engenharia Química III. Para obter a equivalência, o aluno precisa ter cursado as UCs (das matrizes 2007-2016) Engenharia Bioquímica (9° Termo) ou Análise e Controle de Processos (9° Termo). Se não cumpridas, o aluno deverá cursar a nova UC Laboratório de Engenharia Química III.
Processos para Tratamento de Efluentes	Fixa	12°	7 2	Processos para Tratamento de Efluentes	Fixa	10°	7 2	Inclusão de conteúdo; alteração de pré-requisitos; alteração do Termo da UC. Se cumprida, será considerada equivalente.
Projeto de Instalações Químicas	Fixa	12º	7 2					Não houve modificação.
Trabalho de Conclusão de Curso II (TCC-II)	Fixa	12º	7 2	Trabalho de Conclusão de Curso II (TCC-II)	Fixa	12°	7 2	Alteração de pré-requisito.